Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35886280

ABSTRACT

Energy recovery from waste presents a promising alternative for several countries, including Ghana, which has struggled with unsustainable waste treatment methods and an inadequate power supply for several decades. The current study adopts a comprehensive multi-criteria decision-making approach for the selection of an optimal waste-to-energy (WtE) technology for implementation in Ghana. Four WtE technologies are evaluated against twelve selection criteria. An integrated AHP-fuzzy TOPSIS method is applied to estimate the criteria's weights and rank the WtE alternatives. From the AHP results, technical criteria obtained the highest priority weight, while social criteria emerged as the least important in the selection process. The overall ranking order of WtE technologies obtained by fuzzy TOPSIS is as follows: anaerobic digestion > gasification > pyrolysis > plasma gasification. The sensitivity analysis indicates highly consistent and sturdy results regarding the optimal selection. This study recommends adopting a hybrid system of anaerobic digestion and gasification technologies, as this offers a well-balanced system under all of the evaluation criteria compared to the standalone systems. The results of the current study may help the government of Ghana and other prospective investors select a suitable WtE technology, and could serve as an index system for future WtE research in Ghana.


Subject(s)
Refuse Disposal , Waste Management , Feasibility Studies , Ghana , Prospective Studies , Refuse Disposal/methods , Technology , Waste Management/methods
2.
Nanomaterials (Basel) ; 12(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35564226

ABSTRACT

The first part of the current review highlights the evolutionary nuances and research hotspots in the field of nanoparticles in low carbon fuels. Our findings reveal that contribution to the field is largely driven by researchers from Asia, mainly India. Of the three biofuels under review, biodiesel seems to be well studied and developed, whereas studies regarding vegetable oils and alcohols remain relatively scarce. The second part also reviews the application of nanoparticles in biodiesel/vegetable oil/alcohol-based fuels holistically, emphasizing fuel properties and engine characteristics. The current review reveals that the overall characteristics of the low carbon fuel-diesel blends improve under the influence of nanoparticles during combustion in diesel engines. The most important aspect of nanoparticles is that they act as an oxygen buffer that provides additional oxygen molecules in the combustion chamber, promoting complete combustion and lowering unburnt emissions. Moreover, the nanoparticles used for these purposes exhibit excellent catalytic behaviour as a result of their high surface area-to-volume ratio-this leads to a reduction in exhaust pollutants and ensures an efficient and complete combustion. Beyond energy-based indicators, the exergy, economic, environmental, and sustainability aspects of the blends in diesel engines are discussed. It is observed that the performance of the diesel engine fuelled with low carbon fuels according to the second law of efficiency improves under the influence of the nano-additives. Our final part shows that despite the benefits of nanoparticles, humans and animals are under serious threats from the highly toxic nature of nanoparticles.

3.
Article in English | MEDLINE | ID: mdl-35328975

ABSTRACT

Technological innovations have been a matter of contention, and their environmental consequences remain unresolved. Moreover, studies have extensively evaluated environmental challenges using metrics such as nitrogen oxide emissions, sulfur dioxide, carbon emissions, and ecological footprint. The environment has the supply and demand aspect, which is not a component of any of these indicators. By measuring biocapacity and ecological footprint, the load capacity factor follows a certain ecological threshold, allowing for a thorough study on environmental deterioration. With the reduction in load capacity factor, the environmental deterioration increases. In the context of the environment, the interaction between technological innovation and load capacity covers the demand and supply side of the environment. In light of this, employing the dataset ranging from 1980 to 2017 for the case of South Africa, the bound cointegration test in conjunction with the critical value of Kripfganz and Schneider showed cointegration in the model. The study also employed the ARDL, whose outcome revealed that nonrenewable energy usage and economic growth contribute to environmental deterioration, whereas technological innovation and globalization improve the quality of the environment. This study validated the hypothesis of the environmental Kuznets curve for South Africa, as the short-term coefficient value was lower than the long-term elasticity. Furthermore, using the frequency-domain causality test revealed that globalization and economic growth predict load capacity in the long term, and nonrenewable energy predicts load capacity factors in the long and medium term. In addition, technological innovation predicts load capacity factors in the short and long term. Based on the findings, we propose that policymakers should focus their efforts on increasing funding for the research and development of green technologies.


Subject(s)
Carbon Dioxide , Inventions , Carbon , Economic Development , Internationality , Renewable Energy
SELECTION OF CITATIONS
SEARCH DETAIL
...