Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 379: 129060, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37075851

ABSTRACT

Eco-friendly treatment of complex textile and dyeing wastewaters poses a pressing environmental concern. An approach adopting different treatment paths and integrated anaerobic-aerobic processes for high-strength and recalcitrant textile dyeing wastewater was examined. The study demonstrated that over 97% of suspended solids (SS) and more than 70% of chemical oxygen demand (COD) were removed by polyaluminum chloride pre-coagulation of suede fabric dyeing stream. Up to 58% of COD and 83% of SS were removed through hydrolysis pretreatment of other low-strength streams. Notable COD removal of up to 99% from a feed of 20,862 mg COD/L was achieved by integrated anaerobic-aerobic treatment of high strength stream. Besides achieving high COD removal of 97%, the anaerobic granular sludge process demonstrated multi-faceted attributes, including high feed loading, smaller footprint, little sludge production, and good stability. The integrated anaerobic-aerobic treatment offers a robust and viable option for highly contaminated and recalcitrant textile dyeing wastewater.


Subject(s)
Sewage , Wastewater , Waste Disposal, Fluid , Anaerobiosis , Bioreactors , Coloring Agents , Textiles , Textile Industry
2.
Bioresour Technol ; 371: 128640, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36681351

ABSTRACT

This paper outlines an integrated anaerobic-anoxic-oxic (A2O) treatment scheme for high-strength, highly recalcitrant wastewater from the production of polyphenylene sulfide (PPS) resins and their composite chemicals. An integrated anaerobic granular sludge blanket (GSB) and anoxic-oxic (AO) reactor indicated that the A2O removed chemical oxygen demand (COD) of up to 7,043 mg/L with no adverse impact from high total dissolved solids (25,000 mg/L) on the GSB COD removal and effluent suspended solids. At a Total Kjeldahl Nitrogen (TKN) nitrification load of 0.11 g TKN/L.d and 400 mg NH3/L, almost 99 % of the NH3 was degraded with effluent NH3 < 5 mg/L, meeting the limit of 35 mg/L. High S2- levels of up to 1470 mg/L can be transformed through aerobic microbial degradation to meet a limit of 1.0 mg/L. With proper microbial acclimation and process designs, the integrated A2O scheme offers a resilient and robust treatment for high-strength recalcitrant PPS wastewater.


Subject(s)
Waste Disposal, Fluid , Wastewater , Anaerobiosis , Bioreactors , Sewage , Nitrogen/metabolism
3.
Bioresour Technol ; 300: 122751, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31956059

ABSTRACT

Successful installations and operation of many granulation-base treatment plants all over the world in the recent years are reported. A better knowledge towards reactor operation and system performance has led to a growing interest in the technology. While the technology is well accepted and abundant research work has been carried out, insight unfolding the granulation fundamentals and its engineering applications remains unclear. This paper presents a review of some major hypotheses describing the evolvement of anaerobic granules. A number of physico-chemical hypotheses based on thermodynamics and structural hypotheses incorporating microbial considerations for anaerobic granulation have been developed. Features of anaerobic granulation and bioreactor designs are also reviewed. Advances in granulation research with respect to hydrogen production, degradation of recalcitrant or toxic compounds and emissions mitigation are delineated. Prospects and challenges of anaerobic granulation in wastewater treatment are also outlined.


Subject(s)
Bioreactors , Sewage , Anaerobiosis , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...