Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
2.
Mol Biotechnol ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38286973

ABSTRACT

In the world of fast fashion, textile industries are blooming rapidly to meet the consumer's demands. However, vast amounts of wastewater have been constantly produced, and it is becoming a serious environmental problem in the waterways. Although the technology for treating textile wastewater has been well reported and established, more sustainable efforts have taken the attention nowadays. Through the use of living Malaysian Ganoderma lucidum mycelial pellets (GL) and activated dolomite (AD) in the treatment system, the study explores the synergy between biosorption and physisorption as alternative treatment for textile wastewater. In the current work, mixture of GL premixed with AD (50:50; v/v) is used to treat industrial textile wastewater. The morphology, adsorption characteristics, and antibacterial activity of the adsorbents were studied. The mixture of adsorbents is capable of removing colours by 77.8% and reducing chemical oxygen demand (COD) by 75% within 48 h contact. Furthermore, the kinetic and adsorption had been studied and follow the pseudo-first-order kinetic model while both adsorption of Langmuir and Freundlich model was deduced from the treatment. In addition, antimicrobial activities from the treatment potentially reduced 10 × 101 CFU/mL after 48 h. The synergistic treatment by Ganoderma lucidum mycelial pellets and activated dolomite has immense potential in future wastewater treatment technology to obtain cleaner water.

3.
Bioengineered ; 14(1): 2262203, 2023 12.
Article in English | MEDLINE | ID: mdl-37791464

ABSTRACT

The versatility of a well-known fibrous crop, Hibiscus cannabinus (kenaf) is still relatively new to many. Kenaf's potential applications, which can be extended even into critical industries such as pharmaceutical and food industries, have always been overshadowed by its traditionally grown fiber. Therefore, this study aimed to venture into the biotechnological approach in reaping the benefits of kenaf through plant cell suspension culture to maximize the production of kenaf callus biomass (KCB) and exopolysaccharide (EPS), which is deemed to be more sustainable. A growth curve was established which indicates that cultivating kenaf callus in suspension culture for 22 days gives the highest KCB (9.09 ± 1.2 g/L) and EPS (1.1 ± 0.02 g/L). Using response surface methodology (RSM), it was found that sucrose concentration, agitation speed, and naphthalene acetic acid (NAA) concentration can affect the production of KCB and EPS significantly (p < 0.05) while 2,4-dichlorophenoxy acetic acid (2,4-D) was deemed insignificant. To maximize the final yield of KCB and EPS, the final optimized variables are 50 g/L sucrose, 147.02 rpm, and 2 mg/L of NAA. To conclude, the optimized parameters for the cell suspension culture of kenaf callus serve as the blueprint for any sustainable large-scale production in the future and provide an alternative cultivating method to kenaf traditional farming.


The optimized cell cultivation for plant kenaf callus is 22 daysSucrose, agitation and NAA concentration stimulates the production of KCB and EPSHighest KCB and EPS was generated at 13.41 g/L and 1.86 g/L, respectivelyMaximum production blueprint for KCB and EPS require 50 g/L sucrose, 2 mg/L of NAA and 147.02 rpm.


Subject(s)
Hibiscus , Biomass , Cell Culture Techniques , Sucrose , Acetates
4.
Bioengineered ; 14(1): 2252226, 2023 12.
Article in English | MEDLINE | ID: mdl-37646576

ABSTRACT

Phycocyanin, produced by Spirulina platensis, has been reported as an anti-inflammatory, anti-hyperalgesia, antioxidant, anti-tumor, and anti-cancer agent. However, the ingestion of phycocyanin in the body is often hindered by its instability against gastric pH conditions. The nano-drug delivery system has developed as a promising platform for efficient drug delivery and improvement as well as drug efficacy. Bacterial cellulose nanocrystal (BCNC) has it superiority as DDS due to its inherent properties such as nanoscale dimension, large surface area, - biocompatibility, and non-toxic. To improve its mechanical properties, BCNC was crosslinked with glutaraldehyde and was analyzed as a potential candidate for DDS. The Fourier transform infrared analysis of the BCNC suggested that hydrolysis did not alter the chemical composition. The index of crystallinity of the BCNC was 18.31% higher than that of the original BC, suggesting that crystalline BC has been successfully isolated. The BCNC particle also showed a needle-like morphology which is 25 ± 10 nm in diameter and a mean length of 626 ± 172 nm. Crosslinked BCNC also had larger pores than the original BCNC along with higher thermal stability. Optimum phycocyanin adsorption on crosslinked BCNC reached 65.3% in 3 h. The release study shows that the crosslinked BCNC can protect the phycocyanin retardation by gastric fluid until phycocyanin reaches the targeted sites. This study provides an alternative potential DDS derived from natural bioresources with less expenses and better properties to promote the application of BCNC as functional nanomaterials in biomedical science.


Subject(s)
Nanoparticles , Nanostructures , Phycocyanin , Cellulose , Drug Delivery Systems
5.
Waste Biomass Valorization ; : 1-15, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37363337

ABSTRACT

One of potential inhibitors which is widely used for the clinical treatment of COVID-19 in comorbid patients is Angiostensin Converting Enzyme-1 (ACE1) inhibitor. A safer peptide-based ACE1 inhibitor derived from salmon skin collagen, that is considered as the by-product of the fish processing industry have been investigated in this study. The inhibitory activity against ACE1 was examined using in vitro and in silico methods. In vitro analysis includes the extraction of acid-soluble collagen, characterization using FTIR, Raman, UV-Vis, XRD, cytotoxicity assay, and determination of inhibition against ACE1. In silico method visualizes binding affinity, molecular interaction, and inhibition type of intact collagen and active peptides derived from collagen against ACE1 using molecular docking. The results of FTIR spectra detected amide functional groups (A, B, I, II, III) and imine proline/hydroxyproline, while the results of Raman displayed peak absorption of amide I, amide III, proline/hydroxyproline ring, phenylalanine, and protein backbone. Furthermore, UV-Vis spectra showed typical collagen absorption at 230 nm and based on XRD data, the chain types in the samples were α-helix. ACE1 inhibition activity was obtained in a concentration-dependent manner where the highest was 82.83% and 85.84% at concentrations of 1000, and 2000 µg/mL, respectively, and showed very low cytotoxicity at the concentration less than 1000 µg/mL. In silico study showed an interaction between ACE1 and collagen outside the active site with the affinity of - 213.89 kcal/mol. Furthermore, the active peptides of collagen displayed greater affinity compared to lisinopril, namely HF (His-Phe), WYT (Trp-Tyr-Thr), and WF (Trp-Phe) of - 11.52; - 10.22; - 9.58 kcal/mol, respectively. The salmon skin-derived collagen demonstrated ACE1 inhibition activity with a non-competitive inhibition mechanism. In contrast, the active peptides were predicted as potent competitive inhibitors against ACE1. This study indicated that valorization of fish by-product can lead to the production of a promising bioactive compound to treat COVID-19 patient with diabetic comorbid.

7.
J Hazard Mater ; 452: 131325, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37058839

ABSTRACT

In this study, the functionalized smectitic clay (SC)-based nanoscale hydrated zirconium oxide (ZrO-SC) was successfully synthesized and utilized for the adsorptive removal of levofloxacin (LVN) from an aqueous medium. The synthesized ZrO-SC and its precursors (SC and hydrated zirconium oxide (ZrO(OH)2)) were extensively characterized using various analytical methods to get insight into their physicochemical properties. The results of stability investigation confirmed that ZrO-SC composite is chemically stable in strongly acidic medium. The surface measurements revealed that ZrO impregnation to SC resulted in an increased surface area (six-fold higher than SC). The maximum sorption capacity of ZrO-SC for LVN was 356.98 and 68.87 mg g-1 during batch and continuous flow mode studies, respectively. The mechanistic studies of LVN sorption onto ZrO-SC revealed that various sorption mechanisms, such as interlayer complexation, π-π interaction, electrostatic interaction, and surface complexation were involved. The kinetic studies of ZrO-SC in the continuous-flow mode indicated the better applicability of Thomas model. However, the good fitting of Clark model suggested the multi-layer sorption of LVN. The cost estimation of the studied sorbents was also assessed. The obtained results indicate that ZrO-SC is capable of removing LVN and other emergent pollutants from water at a reasonable cost.

8.
Carbohydr Polym ; 306: 120599, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36746569

ABSTRACT

Pretreatment with pure, mixed, and diluted deep eutectic solvents (DESs) was evaluated for its effect on Napier grass through compositional and characterization studies. The morphological changes of biomass caused by pretreatment were analyzed by FTIR and XRD. The cellulose and hemicellulose content after pretreatment using mixed DES increased and decreased 1.29- and 4.25-fold, respectively, when compared to untreated Napier grass. The crystallinity index (CrI. %) of mixed DES sample increased due to the maximum removal of hemicellulose (76 %) and delignification of 62 %. The material costs of ChCl/FA and ChCl/LA for a single run are ≈2.16 USD and ≈1.65 USD, respectively. Pure DES showed that ChCl/LA pretreatment enhanced delignification efficiency and that ChCl/FA increased hemicellulose removal. It was estimated that a single run using ChCl/LA:ChCl/FA to achieve maximum hemicellulose and lignin removal would cost approximately ≈1.89 USD. Future work will evaluate the effect of DES mixture on enzyme digestibility and ethanol production from Napier grass. HYPOTHESES: Deep eutectic solvent (DES) pretreatment studies on the fractionation of lignocellulosic biomass have grown exponentially. The use of pure and diluted DES has been reported to improve saccharification efficiency, delignification, and cellulose retention (Gundupalli et al., 2022). These studies have reported maximum lignin removal but also a lower effect on hemicellulose removal from lignocellulosic biomass. It was hypothesized that mixing two pure DESs could result in maximum removal of hemicellulose and lignin after pretreatment. To our knowledge, no studies have been performed to investigate the efficiency of pretreatment using a DES mixture and compared the outcome with pure and diluted DESs. Furthermore, it was hypothesized that using two pure DESs in a mixed form could lower the material cost for each experimental run. Process efficiency was determined by compositional, XRD, and FTIR analysis. Avenues for future research include determining glucose and ethanol yields during the enzymatic saccharification and fermentation processes.


Subject(s)
Cellulose , Cenchrus , Lignin , Deep Eutectic Solvents , Solvents , Ethanol , Biomass , Hydrolysis
9.
Prog Mol Biol Transl Sci ; 196: 261-270, 2023.
Article in English | MEDLINE | ID: mdl-36813361

ABSTRACT

Amyloid precursor protein (APP) is a membrane protein expressed in several tissues. The occurrence of APP is predominant in synapses of nerve cells. It acts as a cell surface receptor and plays a vital role as a regulator of synapse formation, iron export and neural plasticity. It is encoded by the APP gene that is regulated by substrate presentation. APP is a precursor protein activated by proteolytic cleavage and thereby generating amyloid beta (Aß) peptides which eventually form amyloid plaques that accumulate in Alzheimer's disease patients' brains. In this chapter, we highlight basic mechanism, structure, expression patterns and cleavage of amyloid plaques, and its diagnosis and potential treatment for Alzheimer's disease.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Humans , Amyloid beta-Protein Precursor/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Plaque, Amyloid , Membrane Proteins
10.
Int J Biol Macromol ; 231: 123248, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36642356

ABSTRACT

Gelatin hydrogel is widely employed in various fields, however, commercially available gelatin hydrogels are mostly derived from mammalian which has many disadvantages due to the supply and ethical issues. In this study, the properties of hydrogels from fish-derived collagen fabricated with varying Glutaraldehyde (GA) determined. The antidiabetic properties of salmon gelatin (SG) and tilapia gelatin (TG) was also evaluated against α-glucosidase. Glutaraldehyde-crosslinked salmon gelatin and tilapia gelatin were used, and compared with different concentrations of GA by 0.05 %, 0.1 %, and 0.15 %. Water absorbency, swelling, porosity, pore size and water retention of the hydrogels were dependent on the degree of crosslinking. The synthesis of hydrogels was confirmed by FTIR study. Scanning electron microscope (SEM) observation showed that all hydrogels have a porous structure with irregular shapes and heterogeneous morphology. Performance tests showed that gelatin-GA 0.05 % mixture had the best performance. Antidiabetic bioactivity in vitro and in silico tests showed that the active peptides of SG and TG showed a high binding affinity to α-glucosidase enzyme. In conclusion, SG and TG cross-linked GA 0.05 % have the potential as an antidiabetic agent and as a useful option over mammalian-derived gelatin.


Subject(s)
Gelatin , Hydrogels , Animals , Hydrogels/chemistry , Gelatin/chemistry , Glutaral , alpha-Glucosidases , Peptides , Water/chemistry , Mammals
11.
Environ Res ; 219: 115071, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36528046

ABSTRACT

To remove harmful volatile organic compounds (VOCs) including 2-butanone (methyl ethyl ketone, MEK) emitted from various industrial plants is very important for the clean air. Also, it is worthwhile to recycle porous spent fluid catalytic cracking (SFCC) catalysts from various petroleum refineries in terms of reducing industrial waste and the reuse of discharged resources. Therefore, Mn and Mn-Cu added SFCC (Mn/SFCC and Mn-Cu/SFCC) catalysts were prepared to compare their catalytic efficiencies together with the SFCC catalyst in the ozonation of 2-butanone. Since the SFCC-based catalysts have a structure similar to that of zeolite Y (Y), the Mn-loaded zeolite Y catalyst (Mn/Y) was also prepared to compare its activity for the removal of 2-butanone and ozone to that of the SFCC-based ones at room temperature. Among the five catalysts of this study (Y, Mn/Y, SFCC, Mn/SFCC, and Mn-Cu/SFCC), the Mn-Cu/SFCC and Mn/SFCC catalysts showed the better catalytic decomposition activity than the others. The increased distributions of the Mn3+ species and the Ovacancy sites in Mn/SFCC and Mn-Cu/SFCC catalysts which could supply more available active sites for the 2-butanone and ozone removal would enhance the catalytic activity of them.


Subject(s)
Ozone , Zeolites , Ozone/chemistry , Porosity , Catalysis
12.
Bioresour Technol ; 369: 128486, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36528177

ABSTRACT

Artificial intelligence (AI) and machine learning (ML) are currently used in several areas. The applications of AI and ML based models are also reported for monitoring and design of biological wastewater treatment systems (WWTS). The available information is reviewed and presented in terms of bibliometric analysis, model's description, specific applications, and major findings for investigated WWTS. Among the applied models, artificial neural network (ANN), fuzzy logic (FL) algorithms, random forest (RF), and long short-term memory (LSTM) were predominantly used in the biological wastewater treatment. These models are tested by predictive control of effluent parameters such as biological oxygen demand (BOD), chemical oxygen demand (COD), nutrient parameters, solids, and metallic substances. Following model performance indicators were mainly used for the accuracy analysis in most of the studies: root mean squared error (RMSE), mean square error (MSE), and determination coefficient (DC). Besides, outcomes of various models are also summarized in this study.


Subject(s)
Artificial Intelligence , Water Purification , Wastewater , Waste Disposal, Fluid , Machine Learning
13.
Environ Res ; 218: 114983, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36462696

ABSTRACT

Dearomatization through photocatalytic oxidation is a swiftly rising phenolic compounds removal technology that works at trifling operations requirements with a special emphasis on the generation of nontoxic products. The study aims to develop a LaVO4/MCM-48 nanocomposite that was prepared via a hydrothermally approach assisting the employment of an MCM-48 matrix, which was then utilized for phenol degradation processes. Various techniques including UV-Vis DRS, FTIR, PL, Raman, TEM, and BET analyses are employed to characterize the developed photocatalyst. The developed photocatalyst presented remarkable characteristics, especially increased light photon utilization, and reduced recombination rate leading to enhanced visible-light-driven photodegradation performance owing to the improved specific surface area, specific porosities, and <2 eV narrow energy bandgap. The LaVO4/MCM-48 nanocomposite was experienced on aqueous phenol solution having 20 mg/L concentration under visible-light exposure, demonstrating exceptional performance in photodegradation up to 99.28%, comparatively higher than pure LaVO4. The conducted kinetic measurements revealed good accordance with pseudo first-order. A possible reaction mechanism for photocatalytic degradation was also predicted. The as-synthesized LaVO4/MCM-48 nanocomposite presented excellent stability and recyclability.


Subject(s)
Nanocomposites , Phenol , Wastewater , Light , Phenols
14.
Environ Res ; 219: 115070, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36549497

ABSTRACT

In this study, nickel-loaded perovskite oxides catalysts were synthesized via the impregnation of 10%Ni on XTiO3 (X = Ce, Sr, La, Ba, Ca, and Fe) supports and employed in the catalytic steam gasification of swine manure to produce H2-rich syngas for the first time. The synthesized catalysts were characterized using BET, H2-TPR, XRD, HR-TEM, and EDX analysis. Briefly, using perovskite supports resulted in the production of ultrafine catalyst nanoparticles with a uniform dispersion of Ni particles. According to the catalytic activity test, the gas yield showed the increment as 10% Ni/LaTiO3 < 10% Ni/FeTiO3 < 10% Ni/CeTiO3 < 10% Ni/BaTiO3 < 10% Ni/SrTiO3 < 10% Ni/CaTiO3. Meanwhile, zero coke formation was achieved due to the oxygen mobility of prepared catalysts. Also, the increase in the H2 production for the applied catalysts was in the sequence as 10% Ni/CeTiO3 < 10% Ni/FeTiO3 < 10% Ni/LaTiO3 < 10% Ni/BaTiO3 < 10% Ni/SrTiO3 < 10% Ni/CaTiO3. The maximum H2 selectivity (∼48 vol%) obtained by10% Ni/CaTiO3 was probably due to the synergistic effect of Ni and Ti on enhancing the water-gas shift reaction, and Ca on creating the maximum oxygen mobility compared to other alkaline earth metals doped at the A place of perovskite. Overall, this study provides a suitable solution for enhanced H2 production through steam gasification of swine manure along with suggesting the appropriate supports to prevent Ni deactivation by lowering coke formation at the same time.


Subject(s)
Coke , Steam , Animals , Swine , Nickel , Manure , Oxides , Catalysis , Oxygen
15.
Bioresour Technol ; 370: 128522, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36565819

ABSTRACT

Machine learning (ML) applications have become ubiquitous in all fields of research including protein science and engineering. Apart from protein structure and mutation prediction, scientists are focusing on knowledge gaps with respect to the molecular mechanisms involved in protein binding and interactions with other components in the experimental setups or the human body. Researchers are working on several wet-lab techniques and generating data for a better understanding of concepts and mechanics involved. The information like biomolecular structure, binding affinities, structure fluctuations and movements are enormous which can be handled and analyzed by ML. Therefore, this review highlights the significance of ML in understanding the biomolecular interactions while assisting in various fields of research such as drug discovery, nanomedicine, nanotoxicity and material science. Hence, the way ahead would be to force hand-in hand of laboratory work and computational techniques.


Subject(s)
Machine Learning , Proteins , Humans , Proteins/metabolism , Protein Binding
16.
Bioresour Technol ; 368: 128356, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36414144

ABSTRACT

The valorization of organosolv pretreatment (OP) is a required approach to the industrialization of the current enzyme-mediated lignocellulosic biorefinery. Recent literature has demonstrated that the solvolysis happening in the OP can modify the soluble components into value-added active compounds, namely organosolv modified lignin (OML) and organosolv modified sugars (OMSs), in addition to protecting them against excessive degradation. Among them, the OML is coincidental with the "lignin-first" strategy that should render a highly reactive lignin enriched with ß-O-4 linkages and less condensed structure by organosolv grafting, which is desirable for the transformation into phenolic compounds. The OMSs are valuable glycosidic compounds mainly synthesized by trans-glycosylation, which can find potential applications in cosmetics, foods, and healthcare. Therefore, a state-of-the-art OP holds a big promise of lowering the process cost by the valorization of these active compounds. Recent advances in organosolv modified components are reviewed, and perspectives are made for addressing future challenges.


Subject(s)
Food , Lignin , Biomass , Glycosylation
17.
Membranes (Basel) ; 12(8)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36005674

ABSTRACT

In this study, reactive green 19 dye from wastewater was immobilized on the functionalized chitosan nanofiber membranes to treat soluble microbial proteins in biological wastewater. Polyacrylonitrile nanofiber membrane (PAN) was prepared by the electrospinning technique. After heat treatment, alkaline hydrolysis, and chemically grafted with chitosan to obtain modified chitosan nanofibers (P-COOH-CS), and finally immobilized with RG19 dye, dyed nanofibers were generated (P-COOH-CS-RG19). The synthesis of P-COOH-CS and P-COOH-CS-RG19 are novel materials for protein adsorption that are not deeply investigated currently, with each of the material functions based on their properties in significantly improving the adsorption efficiency. The nanofiber membrane shows good adsorption capacity and great recycling performance, while the application of chitosan and dye acts as the crosslinker in the nanofiber membrane and consists of various functional groups to enhance the adsorption of protein. The dyed nanofibers were applied for the batch adsorption of soluble protein (i.e., lysozyme), and the process parameters including chitosan's molecular weight, coupling pH, chitosan concentration, dye pH, dye concentration, and lysozyme pH were studied. The results showed that the molecular weight of chitosan was 50 kDa, pH 5, concentration 0.5%, initial concentration of dye at 1 mg/mL dye and pH 12, lysozyme solution at 2 mg/mL at pH 8, and the maximum adsorption capacity was 1293.66 mg/g at a temperature of 318 K. Furthermore, thermodynamic, and kinetic studies suggested that the adsorption behavior of lysozyme followed the Langmuir adsorption isotherm model and the pseudo-second-order kinetic model. The optimal adsorption and desorption conditions based on batch experiments were directly applied to remove lysozyme in a continuous operation. This study demonstrated the potential of dyed nanofibers as an efficient adsorbent to remove approximately 100% of lysozyme from the simulated biological wastewater.

18.
Environ Res ; 212(Pt A): 113002, 2022 09.
Article in English | MEDLINE | ID: mdl-35305983

ABSTRACT

Fish skin collagen hydrolyzate has demonstrated the potent inhibition of dipeptidyl peptidase-IV (DPP-IV), one of the treatments for type-2 diabetes mellitus (type-2 DM), but the precise mechanism is still unclear. This study used in silico method to evaluate the potential of the active peptides from tilapia skin collagen (Oreochromis niloticus) for DPP-IV inhibitor. The methodology includes collagen hydrolysis using BIOPEP, which is the database of bioactive peptides; active peptide selection; toxicity, allergenicity, sensory analysis of active peptides; and binding of active peptides to DPP-IV compared with linagliptin. The result indicated that in silico enzymatic hydrolysis of collagen produced active peptides with better prediction of biological activity than intact collagen. There are 13 active peptides were predicted as non-toxic and non-allergenic, some of which have a bitter, salty, and undetectable taste. Docking simulations showed all active peptides interacted with DPP-IV through hydrogen bonds, van der Waals force, hydrophobic interaction, electrostatic force, π-sulfur, and unfavorable interaction, where WF (Trp-Phe), VW (Val-Trp), WY (Trp-Tyr), and WG (Trp-Gly) displayed higher binding affinities of 0.8; 0.5; 0.4; and 0.3 kcal/mol compared with linagliptin. In this study, we successfully demonstrated antidiabetic type-2 DM potential of the active peptides from tilapia skin collagen. The obtained data provided preliminary data for further research in the utilization of fish skin waste as a functional compound to treat the type-2 DM patients. Alternatively, this treatment can be synergistically combined with the available antidiabetic drugs to improve the insulin secretion of the type-2 DM patients.


Subject(s)
Diabetes Mellitus, Type 2 , Peptides , Tilapia , Animals , Collagen , Diabetes Mellitus, Type 2/drug therapy , Humans , Linagliptin , Molecular Docking Simulation , Peptides/chemistry , Peptides/pharmacology , Proteolysis , Skin/chemistry
19.
J Control Release ; 343: 703-723, 2022 03.
Article in English | MEDLINE | ID: mdl-35149141

ABSTRACT

A single gene mutation can cause a number of human diseases that affect the quality of life. Until the development of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) systems, it was challenging to correct a gene mutation to avoid a disease by reverting phenotypes. The advent of CRISPR technology has changed the field of gene editing, given its simplicity and intrinsic programmability, surpassing the limitations of both zinc-finger nuclease and transcription activator-like effector nuclease and becoming the method of choice for therapeutic gene editing by overcoming the bottlenecks of conventional gene-editing techniques. Currently, there is no commercially available medicinal cure to correct a gene mutation that corrects and reverses the abnormality of a gene's function. Devising reprogramming strategies for faithful recapitulation of normal phenotypes is a crucial aspect for directing the reprogrammed cells toward clinical trials. The CRISPR-Cas9 system has been promising as a tool for correcting gene mutations in maladies including blood disorders and muscular degeneration as well as neurological, cardiovascular, renal, genetic, stem cell, and optical diseases. In this review, we highlight recent developments and utilization of the CRISPR-Cas9 system in correcting or generating gene mutations to create model organisms to develop deeper insights into diseases, rescue normal gene functionality, and curb the progression of a disease. Delivery of CRISPR-components being a pivotal aspect in proving its effectiveness, various proven delivery systems have also been briefly discussed.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Gene Editing/methods , Genetic Therapy/methods , Mutation , Quality of Life
20.
Chemosphere ; 295: 133740, 2022 May.
Article in English | MEDLINE | ID: mdl-35124085

ABSTRACT

Cyanobacteria such as Spirulina platensis secretes numerous biomolecules while consuming CO2 for photosynthesis which can reduce the environmental pollution as it can also be grown in wastewater. These biomolecules can be further processed in numerous pathways such as feed, fuel, pharmaceuticals, and nutraceuticals. This study aims to screen the potential molecular mechanisms of pigments from cyanobacteria as antidiabetic type-2 candidates through molecular docking. The activities of the test compounds were compared to commercial diabetic drugs, such as acarbose, linagliptin and polydatin. The results indicated that the binding affinity of pheophytin, ß-carotene, and phycocyanobilin to α-amylase were 0.4, 2, and 2.6 kcal/mol higher than that of acarbose with α-amylase. Binding affinity between pheophytin, ß-carotene, and phycocyanobilin with α-glucosidase were found to be comparable, which resulted 1.2, and 1.6 kcal/mol higher than that of acarbose with α-glucosidase. Meanwhile, binding activity of ß-carotene and phycocyanobilin with DPP-IV were 0.5 and 0.3 kcal/mol higher than that of linagliptin with DPP-IV, whereas pheophytin, ß-carotene, and phycocyanobilin with Glucose-6-phosphate dehydrogenase (G6PD) were 0.2, 1, and 1.4 kcal/mol higher from that of polydatin with G6PD. Moreover, pheophytin, ß-carotene and phycocyanobilin were likely to inhibit α-amylase, α-glucosidase, and DPP-IV competitively, while uncompetitively for G6PD. Thus, the integration of molecular docking and experimental approach, such as in vitro and in vivo studies may greatly improve the discovery of true bioactive compounds in cyanobacteria for type 2 diabetes mellitus drugs and treatments.


Subject(s)
Diabetes Mellitus, Type 2 , Microalgae , Humans , Hypoglycemic Agents , Microalgae/metabolism , Molecular Docking Simulation , alpha-Amylases/chemistry , alpha-Amylases/metabolism , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...