Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 508: 75-86, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28822863

ABSTRACT

Remediation and prevention of environmental contamination by toxic metals is an ongoing issue. Additionally, improving water filtration systems is necessary to prevent toxic metals from circulating through the water supply. Graphene oxide (GO) is a highly sorptive material for a variety of heavy metals under different ionic strength conditions over a wide pH range, making it a promising candidate for use in metal adsorption from contaminated sites or in filtration systems. We present X-ray absorption fine structure (XAFS) spectroscopy results investigating the binding environment of Cd (II), U(VI) and Pb(II) ions onto multi-layered graphene oxide (MLGO). This study shows that the binding environment of each metal onto the MLGO is unique, with different behaviors governing the sorption as a function of pH. For Cd sorption to MLGO, the same mechanism of electrostatic attraction between the MLGO and the Cd+2 ions surrounded by water molecules prevails over the entire pH range studied. The U(VI), present in solution as the uranyl ion, shows only subtle changes as a function of pH, likely due to the varied speciation of uranium in solution. The adsorption of the U to the MLGO is through a covalent, inner-sphere bond. The only metal from this study where the dominant adsorption mechanism to the MLGO changes with pH is Pb. In this case, under lower pH conditions, Pb is bound onto the MLGO through dominantly outer-sphere, electrostatic adsorption, while under higher pH conditions, the bonding changes to be dominated by inner-sphere, covalent adsorption. Since each of the metals in this study show unique binding properties, it is possible that MLGO could be engineered to effectively adsorb specific metal ions from solution and optimize environmental remediation or filtration for each metal.

2.
ACS Nano ; 10(9): 8645-59, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27583654

ABSTRACT

Bimetallic nanoparticles are of immense scientific and technological interest given the synergistic properties observed when two different metallic species are mixed at the nanoscale. This is particularly prevalent in catalysis, where bimetallic nanoparticles often exhibit improved catalytic activity and durability over their monometallic counterparts. Yet despite intense research efforts, little is understood regarding how to optimize bimetallic surface composition and structure synthetically using rational design principles. Recently, it has been demonstrated that peptide-enabled routes for nanoparticle synthesis result in materials with sequence-dependent catalytic properties, providing an opportunity for rational design through sequence manipulation. In this study, bimetallic PdAu nanoparticles are synthesized with a small set of peptides containing known Pd and Au binding motifs. The resulting nanoparticles were extensively characterized using high-resolution scanning transmission electron microscopy, X-ray absorption spectroscopy, and high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Structural information obtained from synchrotron radiation methods was then used to generate model nanoparticle configurations using reverse Monte Carlo simulations, which illustrate sequence dependence in both surface structure and surface composition. Replica exchange with solute tempering molecular dynamics simulations were also used to predict the modes of peptide binding on monometallic surfaces, indicating that different sequences bind to the metal interfaces via different mechanisms. As a testbed reaction, electrocatalytic methanol oxidation experiments were performed, wherein differences in catalytic activity are clearly observed in materials with identical bimetallic composition. Taken together, this study indicates that peptides could be used to arrive at bimetallic surfaces with enhanced catalytic properties, which could be leveraged for rational bimetallic nanoparticle design using peptide-enabled approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...