Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 278(42): 40473-80, 2003 Oct 17.
Article in English | MEDLINE | ID: mdl-12909630

ABSTRACT

The chemokines CCL3 and CCL5, as well as their shared receptor CCR1, are believed to play a role in the pathogenesis of several inflammatory diseases including rheumatoid arthritis, multiple sclerosis, and transplant rejection. In this study we describe the pharmacological properties of a novel small molecular weight CCR1 antagonist, CP-481,715 (quinoxaline-2-carboxylic acid [4(R)-carbamoyl-1(S)-(3-fluorobenzyl)-2(S),7-dihydroxy-7-methyloctyl]amide). Radiolabeled binding studies indicate that CP-481,715 binds to human CCR1 with a Kd of 9.2 nm and displaces 125I-labeled CCL3 from CCR1-transfected cells with an IC50 of 74 nm. CP-481,715 lacks intrinsic agonist activity but fully blocks the ability of CCL3 and CCL5 to stimulate receptor signaling (guanosine 5'-O-(thiotriphosphate) incorporation; IC50 = 210 nm), calcium mobilization (IC50 = 71 nm), monocyte chemotaxis (IC50 = 55 nm), and matrix metalloproteinase 9 release (IC50 = 54 nm). CP-481,715 retains activity in human whole blood, inhibiting CCL3-induced CD11b up-regulation and actin polymerization (IC50 = 165 and 57 nm, respectively) on monocytes. Furthermore, it behaves as a competitive and reversible antagonist. CP-481,715 is >100-fold selective for CCR1 as compared with a panel of G-protein-coupled receptors including related chemokine receptors. Evidence for its potential use in human disease is suggested by its ability to inhibit 90% of the monocyte chemotactic activity present in 11/15 rheumatoid arthritis synovial fluid samples. These data illustrate that CP-481,715 is a potent and selective antagonist for CCR1 with therapeutic potential for rheumatoid arthritis and other inflammatory diseases.


Subject(s)
Inflammation , Quinoxalines/chemistry , Quinoxalines/pharmacology , Receptors, Chemokine/antagonists & inhibitors , Actins/metabolism , Arthritis, Rheumatoid/metabolism , CD11b Antigen/biosynthesis , Calcium/metabolism , Cell Line , Chemokines/metabolism , Chemotaxis , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Kinetics , Ligands , Matrix Metalloproteinase 9/metabolism , Models, Chemical , Monocytes/metabolism , Protein Binding , Receptors, CCR1 , Receptors, Chemokine/metabolism , Signal Transduction , Transfection , Up-Regulation
2.
Arterioscler Thromb Vasc Biol ; 22(3): 443-9, 2002 Mar 01.
Article in English | MEDLINE | ID: mdl-11884288

ABSTRACT

Leukotriene B4 (LTB4) is a potent chemotactic agent that activates monocytes through the LTB4 receptor (BLTR). We tested the hypothesis that LTB4 receptor blockade would slow atherosclerotic progression by inhibiting monocyte recruitment. Homozygous low-density receptor knockout (LDLr(-/-)) mice and apolipoprotein E deficient (apoE(-/-)) mice were treated with a specific LTB4 receptor antagonist, CP-105,696, for 35 days. In apoE(-/-)mice, treatment with the LTB4 antagonist did not affect plasma lipid concentrations but significantly reduced CD11b levels both in vascular lesions and whole blood. Compared with age-matched controls, lipid accumulation and monocyte infiltration were significantly reduced in treated apoE(-/-) mice at all time points tested. Lesion area reduction was also demonstrated in LDLr(-/-) mice maintained on a high-fat diet. LTB4 antagonism had no significant effect on lesion size in mice possessing the null alleles for another chemotactic agent, monocyte chemoattractant protein-1 (MCP-1(-/-)xapoE(-/-)), suggesting MCP-1 and LTB4 may either interact or exert their effects by a common mechanism. These results demonstrate that in a preclinical model of atherosclerosis LTB4 receptor blockade reduces lesion progression and further suggest a previously unrecognized role for LTB4 or other oxidized lipids recognized by the BLTR receptor in the pathogenesis of this disease.


Subject(s)
Arteriosclerosis/etiology , Benzopyrans/pharmacology , Carboxylic Acids/pharmacology , Foam Cells , Leukotriene Antagonists/pharmacology , Receptors, Leukotriene B4/antagonists & inhibitors , Animals , Apolipoproteins E/genetics , Arteriosclerosis/metabolism , Arteriosclerosis/pathology , Chemokine CCL2/genetics , Disease Progression , Immunohistochemistry , Leukotriene B4/physiology , Lipids/blood , Macrophage-1 Antigen/immunology , Macrophage-1 Antigen/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/cytology , Monocytes/metabolism , Receptors, CCR2 , Receptors, Chemokine/metabolism , Receptors, LDL/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...