Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Front Genet ; 14: 1060138, 2023.
Article in English | MEDLINE | ID: mdl-37388938

ABSTRACT

Sustenance of smallholder poultry production as an alternative source of food security and income is imperative in communities exposed to hydrocarbon pollution. Exposure to hydrocarbon pollutants causes disruption of homeostasis, thereby compromising the genetic potential of the birds. Oxidative stress-mediated dysfunction of the cellular membrane is a contributing factor in the mechanism of hydrocarbon toxicity. Epidemiological studies show that tolerance to hydrocarbon exposure may be caused by the activation of genes that control disease defense pathways like aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2p45-related factor 2 (Nrf2). Disparity in the mechanism and level of tolerance to hydrocarbon fragments among species may exist and may result in variations in gene expression within individuals of the same species upon exposure. Genomic variability is critical for adaptation and serves as a survival mechanism in response to environmental pollutants. Understanding the interplay of diverse genetic mechanisms in relation to environmental influences is important for exploiting the differences in various genetic variants. Protection against pollutant-induced physiological responses using dietary antioxidants can mitigate homeostasis disruptions. Such intervention may initiate epigenetic modulation relevant to gene expression of hydrocarbon tolerance, enhancing productivity, and possibly future development of hydrocarbon-tolerant breeds.

2.
Front Genet ; 13: 1021685, 2022.
Article in English | MEDLINE | ID: mdl-36579332

ABSTRACT

Camels (Camelus dromedarius) in Africa are adapted to arid and the semi-arid environmental conditions, and are valuable for meat, milk and fiber production. On account of the growing demand for camels in this continent, there is a need for knowledge on their phenotypic and genetic diversity. This is fundamental to sustainable herd management and utilization including the design of appropriate breeding and conservation strategies. We reviewed studies on the phenotypic and genetic characterization, breeding objectives, systems of production, productive and reproductive performances, and pathways for the sustainable rearing and use of camels in Africa. The morphological and genetic diversity, productive and reproductive abilities of African camels suggest the existence of genetic variations that can be utilized for breeds/ecotypes' genetic improvement and conservation. Possible areas of intervention include the establishment of open nucleus and community-based breeding schemes and utilization of modern reproductive technologies for the genetic improvement of milk and meat yields, sustainable management of rangelands, capacity building of the pastoralists and agro-pastoralists, institutional supports, formation of centralized conservation centres and efficient and effective marketing systems.

3.
PLoS One ; 17(6): e0261048, 2022.
Article in English | MEDLINE | ID: mdl-35696370

ABSTRACT

This study was conducted to characterise phenotypically helmeted Guinea fowls in three agro-ecologies in Nigeria using multivariate approach. Eighteen biometric characters, four morphological indices and eleven qualitative physical traits were investigated in a total of 569 adult birds (158 males and 411 females). Descriptive statistics, non-parametric Kruskal-Wallis H test followed by the Mann-Whitney U and Dunn-Bonferroni tests for post hoc, Multiple Correspondence Analysis (MCA), Univariate Analysis, Canonical Discriminant Analysis, Categorical Principal Component Analysis and Decision Trees were employed to discern the effects of agro-ecological zone and sex on the morphostructural parameters. Agro-ecology had significant effect (P<0.05; P<0.01) on all the colour traits. In general, the most frequently observed colour phenotype of Guinea fowl had pearl plumage colour (54.0%), pale red skin colour (94.2%), black shank colour (68.7%), brown eye colour (49.7%), white earlobe colour (54.8%) and brown helmet colour (72.6%). The frequencies of helmet shape and wattle size were significantly influenced (P<0.01) by agro-ecology and sex. Overall, birds from the Southern Guinea Savanna zone had significantly higher values (P<0.05) for most biometric traits compared to their Sudano-Sahelian and Tropical Rainforest counterparts. They were also more compact (120.00 vs. 110.00 vs. 107.69) but had lesser condition index (7.66 vs. 9.45 vs. 9.30) and lower long-leggedness (19.71 vs. 19.23 vs. 9.51) than their counterparts from the two other zones. Sexual dimorphism (P<0.05) was in favour of male birds especially those in Southern Guinea Savanna and Sudano-Sahelian zones. However, the MCA and discriminant analysis revealed considerable intermingling of the qualitative physical traits, biometric traits and body indices especially between the Sudano-Sahelian and Tropical Rainforest birds. In spite of the high level of genetic admixture, the Guinea fowl populations could to a relative extent be distinguished using wing length, body length and eye colour. Generally, the birds from the three zones appeared to be more homogeneous than heterogeneous in nature. However, further complementary work on genomics will guide future selection and breeding programs geared towards improving the productivity, survival and environmental adaptation of indigenous helmeted Guinea fowls in the tropics.


Subject(s)
Galliformes , Animals , Biometry , Discriminant Analysis , Female , Galliformes/genetics , Male , Nigeria , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...