Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 2327, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38282034

ABSTRACT

The hazardous plasma environment surrounding Earth poses risks to satellites due to internal charging and surface charging effects. Accurate predictions of these risks are crucial for minimizing damage and preparing for system failures of satellites. To forecast the plasma environment, it is essential to know the current state of the system, as the accuracy of the forecast depends on the accuracy of the initial condition of the forecast. In this study, we use data assimilation techniques to combine observational data and model predictions, and present the first global validation of a data-assimilative electron ring current nowcast during a geomagnetic storm. By assimilating measurements from one satellite and validating the results against another satellite in a different magnetic local time sector, we assess the global response and effectiveness of the data assimilation technique for space weather applications. Using this method, we found that the simulation accuracy can be drastically improved at times when observations are available while eliminating almost all of the bias previously present in the model. These findings contribute to the construction of improved operational models in estimating surface charging risks and providing realistic 'source' populations for radiation belt simulations.

2.
Sci Rep ; 13(1): 970, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36653461

ABSTRACT

The Earth's magnetic field traps charged particles which are transported longitudinally around Earth, generating a near-circular current, known as the ring current. While the ring current has been measured on the ground and space for many decades, the enhancement of the ring current during geomagnetic storms is still not well understood, due to many processes contributing to its dynamics on different time scales. Here, we show that existing ring current models systematically overestimate electron flux observations of 10-50 keV on the nightside during storm onset. By analyzing electron drift trajectories, we show that this systematic overestimation of flux can be explained through a missing loss process which operates in the pre-midnight sector. Quantifying this loss reveals that the theoretical upper limit of loss has to be reached over a broad region of space in order to reproduce the observations. This missing loss may be attributed to inaccuracies in the parameterization of the loss due to chorus wave interactions, combined with the scattering by electrostatic electron cyclotron harmonic waves which is currently not included in ring current models.

3.
Sci Rep ; 12(1): 9732, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35697752

ABSTRACT

In the last years, electron density profile functions characterized by a linear dependence on the scale height showed good results when approximating the topside ionosphere. The performance above 800 km, however, is not yet well investigated. This study investigates the capability of the semi-Epstein functions to represent electron density profiles from the peak height up to 20,000 km. Electron density observations recorded by the Van Allen Probes were used to resolve the scale height dependence in the plasmasphere. It was found that the linear dependence of the scale height in the topside ionosphere cannot be directly used to extrapolate profiles above 800 km. We find that the dependence of scale heights on altitude is quadratic in the plasmasphere. A statistical model of the scale heights is therefore proposed. After combining the topside ionosphere and plasmasphere by a unified model, we have obtained good estimations not only in the profile shapes, but also in the Total Electron Content magnitude and distributions when compared to actual measurements from 2013, 2014, 2016 and 2017. Our investigation shows that Van Allen Probes can be merged to radio-occultation data to properly represent the upper ionosphere and plasmasphere by means of a semi-Epstein function.

4.
Sci Adv ; 7(5)2021 Jan.
Article in English | MEDLINE | ID: mdl-33514538

ABSTRACT

The Van Allen Probes mission provides unique measurements of the most energetic radiation belt electrons at ultrarelativistic energies. Simultaneous observations of plasma waves allow for the routine inference of total plasma number density, a parameter that is very difficult to measure directly. On the basis of long-term observations in 2015, we show that the underlying plasma density has a controlling effect over acceleration to ultrarelativistic energies, which occurs only when the plasma number density drops down to very low values (~10 cm-3). Such low density creates preferential conditions for local diffusive acceleration of electrons from hundreds of kilo-electron volts up to >7 MeV. While previous models could not reproduce the local acceleration of electrons to such high energies, here we complement the observations with a numerical model to show that the conditions of extreme cold plasma depletion result in acceleration up to >7 MeV.

5.
Nat Commun ; 11(1): 4533, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32913216

ABSTRACT

Electrically charged particles are trapped by the Earth's magnetic field, forming the Van Allen radiation belts. Observations show that electrons in this region can have energies in excess of 7 MeV. However, whether electrons at these ultra-relativistic energies are locally accelerated, arise from betatron and Fermi acceleration due to transport across the magnetic field, or if a combination of both mechanisms is required, has remained an unanswered question in radiation belt physics. Here, we present a unique way of analyzing satellite observations which demonstrates that local acceleration is capable of heating electrons up to 7 MeV. By considering the evolution of phase space density peaks in magnetic coordinate space, we observe distinct signatures of local acceleration and the subsequent outward radial diffusion of ultra-relativistic electron populations. The results have important implications for understanding the origin of ultra-relativistic electrons in Earth's radiation belts, as well as in magnetized plasmas throughout the solar system.

6.
Geophys Res Lett ; 46(14): 7945-7954, 2019 Jul 28.
Article in English | MEDLINE | ID: mdl-31749506

ABSTRACT

Modeling and observations have shown that energy diffusion by chorus waves is an important source of acceleration of electrons to relativistic energies. By performing long-term simulations using the three-dimensional Versatile Electron Radiation Belt code, in this study, we test how the latitudinal dependence of chorus waves can affect the dynamics of the radiation belt electrons. Results show that the variability of chorus waves at high latitudes is critical for modeling of megaelectron volt (MeV) electrons. We show that, depending on the latitudinal distribution of chorus waves under different geomagnetic conditions, they cannot only produce a net acceleration but also a net loss of MeV electrons. Decrease in high-latitude chorus waves can tip the balance between acceleration and loss toward acceleration, or alternatively, the increase in high-latitude waves can result in a net loss of MeV electrons. Variations in high-latitude chorus may account for some of the variability of MeV electrons.

7.
Sci Rep ; 7(1): 17719, 2017 12 18.
Article in English | MEDLINE | ID: mdl-29255219

ABSTRACT

Electron flux in the Earth's outer radiation belt is highly variable due to a delicate balance between competing acceleration and loss processes. It has been long recognized that Electromagnetic Ion Cyclotron (EMIC) waves may play a crucial role in the loss of radiation belt electrons. Previous theoretical studies proposed that EMIC waves may account for the loss of the relativistic electron population. However, recent observations showed that while EMIC waves are responsible for the significant loss of ultra-relativistic electrons, the relativistic electron population is almost unaffected. In this study, we provide a theoretical explanation for this discrepancy between previous theoretical studies and recent observations. We demonstrate that EMIC waves mainly contribute to the loss of ultra-relativistic electrons. This study significantly improves the current understanding of the electron dynamics in the Earth's radiation belt and also can help us understand the radiation environments of the exoplanets and outer planets.

8.
Nat Commun ; 7: 12883, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27678050

ABSTRACT

The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes.

9.
Nat Commun ; 6: 7703, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26169360

ABSTRACT

A number of modes of oscillations of particles and fields can exist in space plasmas. Since the early 1970s, space missions have observed noise-like plasma waves near the geomagnetic equator known as 'equatorial noise'. Several theories were suggested, but clear observational evidence supported by realistic modelling has not been provided. Here we report on observations by the Cluster mission that clearly show the highly structured and periodic pattern of these waves. Very narrow-banded emissions at frequencies corresponding to exact multiples of the proton gyrofrequency (frequency of gyration around the field line) from the 17th up to the 30th harmonic are observed, indicating that these waves are generated by the proton distributions. Simultaneously with these coherent periodic structures in waves, the Cluster spacecraft observes 'ring' distributions of protons in velocity space that provide the free energy for the waves. Calculated wave growth based on ion distributions shows a very similar pattern to the observations.

10.
Nature ; 437(7056): 227-30, 2005 Sep 08.
Article in English | MEDLINE | ID: mdl-16148927

ABSTRACT

The Van Allen radiation belts are two regions encircling the Earth in which energetic charged particles are trapped inside the Earth's magnetic field. Their properties vary according to solar activity and they represent a hazard to satellites and humans in space. An important challenge has been to explain how the charged particles within these belts are accelerated to very high energies of several million electron volts. Here we show, on the basis of the analysis of a rare event where the outer radiation belt was depleted and then re-formed closer to the Earth, that the long established theory of acceleration by radial diffusion is inadequate; the electrons are accelerated more effectively by electromagnetic waves at frequencies of a few kilohertz. Wave acceleration can increase the electron flux by more than three orders of magnitude over the observed timescale of one to two days, more than sufficient to explain the new radiation belt. Wave acceleration could also be important for Jupiter, Saturn and other astrophysical objects with magnetic fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...