Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Vis Sci Technol ; 11(5): 24, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35604672

ABSTRACT

Purpose: Optogenetic gene therapy to render remaining retinal cells light-sensitive in end-stage retinal degeneration is a promising strategy for treatment of individuals blind because of a variety of different inherited retinal degenerations. The clinical trials currently in progress focus on delivery of optogenetic genes to ganglion cells. Delivery of optogenetic molecules to cells in the outer neural retina is predicted to be even more advantageous because it harnesses more of the retinal circuitry. However, this approach has not yet been tested in large animal models. For this reason, we evaluated the safety and efficacy of optogenetic therapy targeting remaining diseased cone photoreceptors in the Rcd1 dog model of retinitis pigmentosa. Methods: Imaging and measures of retinal function and functional vision were carried out, as well as terminal studies evaluating multi-electrode array recordings and histology. Results: Animals remained healthy and active throughout the study and showed improved retinal and visual function as assessed by electroretinography and visual-evoked potentials, improved navigational vision, and improved function of cone photoreceptors and the downstream retinal circuitry. Conclusions: The findings demonstrate that an optogenetic approach targeting the outer retina in a blind large animal model can partially restore vision. Translational Relevance: This work has translational relevance because the approach could potentially be extrapolated to treat humans who are totally blind because of retinal degenerative disease.


Subject(s)
Dependovirus , Retinal Degeneration , Animals , Dependovirus/genetics , Dogs , Optogenetics/methods , Retina , Retinal Cone Photoreceptor Cells/pathology , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retinal Degeneration/therapy , Vision, Ocular
2.
Invest Ophthalmol Vis Sci ; 61(5): 30, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32428231

ABSTRACT

Purpose: To determine the therapeutic window for gene augmentation for Leber congenital amaurosis (LCA) associated with mutations in LCA5. Methods: Five patients (ages 6-31) with LCA and biallelic LCA5 mutations underwent an ophthalmic examination including optical coherence tomography (SD-OCT), full-field stimulus testing (FST), and pupillometry. The time course of photoreceptor degeneration in the Lca5gt/gt mouse model and the efficacy of subretinal gene augmentation therapy with AAV8-hLCA5 delivered at postnatal day 5 (P5) (early, n = 11 eyes), P15 (mid, n = 14), and P30 (late, n = 13) were assessed using SD-OCT, histologic study, electroretinography (ERG), and pupillometry. Comparisons were made with the human disease. Results: Patients with LCA5-LCA showed a maculopathy with detectable outer nuclear layer (ONL) in the pericentral retina and at least 4 log units of dark-adapted sensitivity loss. The Lca5gt/gt mouse has a similarly severe and rapid photoreceptor degeneration. The ONL became progressively thinner and was undetectable by P60. Rod- and cone-mediated ERGs were severely reduced in amplitudes at P30 and became nondetectable by P60. Subretinal AAV8-hLCA5 administered to Lca5gt/gt mice at P5 and P15, but not at P30, resulted in structural and functional rescue. Conclusions: LCA5-LCA is a particularly severe form of LCA that was recapitulated in the Lca5gt/gt mouse. Gene augmentation resulted in structural and functional rescue in the Lca5gt/gt mouse if delivered before P30. Retained photoreceptors were visible within the central retina in all patients with LCA5-LCA, at a level equivalent to that observed in rescued Lca5gt/gt mice, suggesting a window of opportunity for the treatment of patients with LCA5-LCA.


Subject(s)
Dependovirus/genetics , Eye Proteins/genetics , Genetic Therapy , Leber Congenital Amaurosis/therapy , Microtubule-Associated Proteins/genetics , Retina/physiopathology , Adult , Animals , Child , Disease Models, Animal , Electroretinography , Female , Genetic Therapy/methods , Genetic Vectors , Humans , Leber Congenital Amaurosis/genetics , Leber Congenital Amaurosis/physiopathology , Male , Mice , Mice, Inbred C57BL , Optical Imaging , Phenotype , Pupil/physiology , Tomography, Optical Coherence , Visual Acuity/physiology , Visual Field Tests , Visual Fields/physiology , Young Adult
3.
Sci Rep ; 8(1): 17286, 2018 Nov 23.
Article in English | MEDLINE | ID: mdl-30470797

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

4.
Mol Ther ; 26(6): 1581-1593, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29673930

ABSTRACT

Most genetically distinct inherited retinal degenerations are primary photoreceptor degenerations. We selected a severe early onset form of Leber congenital amaurosis (LCA), caused by mutations in the gene LCA5, in order to test the efficacy of gene augmentation therapy for a ciliopathy. The LCA5-encoded protein, Lebercilin, is essential for the trafficking of proteins and vesicles to the photoreceptor outer segment. Using the AAV serotype AAV7m8 to deliver a human LCA5 cDNA into an Lca5 null mouse model of LCA5, we show partial rescue of retinal structure and visual function. Specifically, we observed restoration of rod-and-cone-driven electroretinograms in about 25% of injected eyes, restoration of pupillary light responses in the majority of treated eyes, an ∼20-fold decrease in target luminance necessary for visually guided behavior, and improved retinal architecture following gene transfer. Using LCA5 patient-derived iPSC-RPEs, we show that delivery of the LCA5 cDNA restores lebercilin protein and rescues cilia quantity. The results presented in this study support a path forward aiming to develop safety and efficacy trials for gene augmentation therapy in human subjects with LCA5 mutations. They also provide the framework for measuring the effects of intervention in ciliopathies and other severe, early-onset blinding conditions.


Subject(s)
Blindness/metabolism , Blindness/therapy , Dependovirus/genetics , Genetic Therapy/methods , Animals , Electroretinography , Eye Proteins/genetics , Eye Proteins/metabolism , Female , Humans , Leber Congenital Amaurosis/metabolism , Leber Congenital Amaurosis/therapy , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism
5.
Sci Rep ; 5: 17105, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26597678

ABSTRACT

The future of treating inherited and acquired genetic diseases will be defined by our ability to introduce transgenes into cells and restore normal physiology. Here we describe an autogenous transgene regulatory system (ARES), based on the bacterial lac repressor, and demonstrate its utility for controlling the expression of a transgene in bacteria, eukaryotic cells, and in the retina of mice. This ARES system is inducible by the small non-pharmacologic molecule, Isopropyl ß-D-1-thiogalactopyranoside (IPTG) that has no off-target effects in mammals. Following subretinal injection of an adeno-associated virus (AAV) vector encoding ARES, luciferase expression can be reversibly controlled in the murine retina by oral delivery of IPTG over three induction-repression cycles. The ability to induce transgene expression repeatedly via administration of an oral inducer in vivo, suggests that this type of regulatory system holds great promise for applications in human gene therapy.


Subject(s)
Gene Expression , Genetic Therapy , Transcriptional Activation/drug effects , Administration, Oral , Animals , Dependovirus/genetics , Genes, Reporter , HEK293 Cells , Humans , Isopropyl Thiogalactoside/administration & dosage , Luciferases/biosynthesis , Luciferases/genetics , Mice , Retina/metabolism , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...