Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Psychophysiology ; 54(11): 1663-1675, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28752567

ABSTRACT

Space is a dimension shared by different modalities, but at what stage spatial encoding is affected by multisensory processes is unclear. Early studies observed attenuation of N1/P2 auditory evoked responses following repetition of sounds from the same location. Here, we asked whether this effect is modulated by audiovisual interactions. In two experiments, using a repetition-suppression paradigm, we presented pairs of tones in free field, where the test stimulus was a tone presented at a fixed lateral location. Experiment 1 established a neural index of auditory spatial sensitivity, by comparing the degree of attenuation of the response to test stimuli when they were preceded by an adapter sound at the same location versus 30° or 60° away. We found that the degree of attenuation at the P2 latency was inversely related to the spatial distance between the test stimulus and the adapter stimulus. In Experiment 2, the adapter stimulus was a tone presented from the same location or a more medial location than the test stimulus. The adapter stimulus was accompanied by a simultaneous flash displayed orthogonally from one of the two locations. Sound-flash incongruence reduced accuracy in a same-different location discrimination task (i.e., the ventriloquism effect) and reduced the location-specific repetition-suppression at the P2 latency. Importantly, this multisensory effect included topographic modulations, indicative of changes in the relative contribution of underlying sources across conditions. Our findings suggest that the auditory response at the P2 latency is affected by spatially selective brain activity, which is affected crossmodally by visual information.


Subject(s)
Auditory Perception/physiology , Brain/physiology , Evoked Potentials, Auditory/physiology , Visual Perception/physiology , Acoustic Stimulation , Adult , Electroencephalography , Evoked Potentials, Visual/physiology , Female , Humans , Male , Photic Stimulation , Young Adult
2.
J Cogn Neurosci ; 29(1): 203-219, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27623248

ABSTRACT

When attention is directed to stimuli in a given modality and location, information processing in other irrelevant modalities at this location is affected too. This spread of attention to irrelevant stimuli is often interpreted as superiority of location selection over modality selection. However, this conclusion is based on experimental paradigms in which spatial attention was transient whereas intermodal attention was sustained. Furthermore, whether modality selection affects processing in the task-relevant modality at irrelevant locations remains an open question. Here, we addressed effects of simultaneous spatial and intermodal attention in an EEG study using a balanced design where spatial attention was transient and intermodal attention sustained or vice versa. Effects of spatial attention were not affected by which modality was attended and effects of intermodal attention were not affected by whether the stimuli were at the attended location or not. This suggests not only spread of spatial attention to task-irrelevant modalities but also spread of intermodal attention to task-irrelevant locations. Whether spatial attention was transient or sustained did not alter the effect of spatial attention on visual N1 and Nd1 responses. Prestimulus preparatory occipital alpha band responses were affected by both transient and sustained spatial cueing, whereas late post-stimulus responses were more strongly affected by sustained than by transient spatial attention. Sustained but not transient intermodal attention affected late responses (>200 msec) to visual stimuli. Together, the results undermine the universal superiority of spatial attention and suggest that the mode of attention manipulation is an important factor determining attention effects.


Subject(s)
Attention/physiology , Auditory Perception/physiology , Brain/physiology , Space Perception/physiology , Visual Perception/physiology , Adult , Alpha Rhythm , Analysis of Variance , Evoked Potentials , Female , Humans , Male , Neuropsychological Tests , Young Adult
3.
Front Hum Neurosci ; 8: 524, 2014.
Article in English | MEDLINE | ID: mdl-25100973

ABSTRACT

Functional magnetic resonance imaging (fMRI) findings suggest that a part of the planum temporale (PT) is involved in representing spatial properties of acoustic information. Here, we tested whether this representation of space is frequency-dependent or generalizes across spectral content, as required from high order sensory representations. Using sounds with two different spectral content and two spatial locations in individually tailored virtual acoustic environment, we compared three conditions in a sparse-fMRI experiment: Single Location, in which two sounds were both presented from one location; Fixed Mapping, in which there was one-to-one mapping between two sounds and two locations; and Mixed Mapping, in which the two sounds were equally likely to appear at either one of the two locations. We surmised that only neurons tuned to both location and frequency should be differentially adapted by the Mixed and Fixed mappings. Replicating our previous findings, we found adaptation to spatial location in the PT. Importantly, activation was higher for Mixed Mapping than for Fixed Mapping blocks, even though the two sounds and the two locations appeared equally in both conditions. These results show that spatially tuned neurons in the human PT are not invariant to the spectral content of sounds.

4.
J Neurosci ; 32(39): 13501-9, 2012 Sep 26.
Article in English | MEDLINE | ID: mdl-23015439

ABSTRACT

In humans, whose ears are fixed on the head, auditory stimuli are initially registered in space relative to the head. Eventually, locations of sound sources need to be encoded also relative to the body, or in absolute allocentric space, to allow orientation toward the sounds sources and consequent action. We can therefore distinguish between two spatial representation systems: a basic head-centered coordinate system and a more complex head-independent system. In an ERP experiment, we attempted to reveal which of these two coordinate systems is represented in the human auditory cortex. We dissociated the two systems using the mismatch negativity (MMN), a well studied EEG effect evoked by acoustic deviations. Contrary to previous findings suggesting that only primary head-related information is present at this early stage of processing, we observed significant MMN effects for both head-independent and head-centered deviant stimuli. Our findings thus reveal that both primary head-related and secondary body- or world-related reference frames are represented at this stage of auditory processing.


Subject(s)
Auditory Cortex/physiology , Evoked Potentials, Auditory/physiology , Head Movements , Orientation/physiology , Sound Localization/physiology , Acoustic Stimulation , Adult , Analysis of Variance , Brain Mapping , Discrimination, Psychological , Electroencephalography , Female , Functional Laterality/physiology , Humans , Male , Psychoacoustics , Reaction Time/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...