Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(8): 9589-9599, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32019296

ABSTRACT

Transparent conductive oxides (TCOs) are highly desirable for numerous applications ranging from photovoltaics to light-emitting diodes and photoelectrochemical devices. Despite progress, it remains challenging to fabricate porous TCOs (pTCOs) that may provide, for instance, a hierarchical nanostructured morphology for the separation of photoexcited hole/electron couples. Here, we present a facile process for the fabrication of porous architectures of aluminum-doped zinc oxide (AZO), a low-cost and earth-abundant transparent conductive oxide. Three-dimensional nanostructured films of AZO with tunable porosities from 10 to 98% were rapidly self-assembled from flame-made nanoparticle aerosols. Successful Al doping was confirmed by X-ray photoemission spectroscopy, high-resolution transmission electron microscopy, elemental mapping, X-ray diffraction, and Fourier transform infrared spectroscopy. An optimal Al-doping level of 1% was found to induce the highest material conductivity, while a higher amount led to partial segregation and formation of aluminum oxide domains. A controllable semiconducting to conducting behavior with a resistivity change of more than 4 orders of magnitudes from about 3 × 102 to 9.4 × 106 Ω cm was observed by increasing the AZO film porosity from 10 to 98%. While the denser AZO morphologies may find immediate application as transparent electrodes, we demonstrate that the ultraporous semiconducting layers have potential as a light-driven gas sensor, showing a high response of 1.92-1 ppm of ethanol at room temperature. We believe that these tunable porous transparent conductive oxides and their scalable fabrication method may provide a highly performing material for future optoelectronic devices.

2.
Angew Chem Int Ed Engl ; 58(16): 5202-5224, 2019 Apr 08.
Article in English | MEDLINE | ID: mdl-29878530

ABSTRACT

Quantum dots (QDs) of lead chalcogenides (e.g. PbS, PbSe, and PbTe) are attractive near-infrared (NIR) active materials that show great potential in a wide range of applications, such as, photovoltaics (PV), optoelectronics, sensors, and bio-electronics. The surface ligand plays an essential role in the production of QDs, post-synthesis modification, and their integration to practical applications. Therefore, it is critically important that the influence of surface ligands on the synthesis and properties of QDs is well understood for their applications in various devices. In this Review we elaborate the application of colloidal synthesis techniques for the preparation of lead chalcogenide based QDs. We specifically focus on the influence of surface ligands on the synthesis of QDs and their solution-phase ligand exchange. Given the importance of lead chalcogenide QDs as potential light harvesters, we also pay particular attention to the current progress of these QDs in photovoltaic applications.

3.
Angew Chem Int Ed Engl ; 57(10): 2644-2647, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29345038

ABSTRACT

Research into efficient synthesis, fundamental properties, and potential applications of phosphorene is currently the subject of intense investigation. Herein, solution-processed phosphorene or few-layer black phosphorus (FL-BP) sheets are prepared using a microwave exfoliation method and used in photoelectrochemical cells. Based on experimental and theoretical (DFT) studies, the FL-BP sheets are found to act as catalytically active sites and show excellent electrocatalytic activity for triiodide reduction in dye-sensitized solar cells. Importantly, the device fabricated based on the newly designed cobalt sulfide (CoSx ) decorated nitrogen and sulfur co-doped carbon nanotube heteroelectrocatalyst coated with FL-BP (FL-BP@N,S-doped CNTs-CoSx ) displayed an impressive photovoltaic efficiency of 8.31 %, outperforming expensive platinum based cells. This work paves the way for using phosphorene-based electrocatalysts for next-generation energy-storage systems.

4.
Phys Chem Chem Phys ; 18(20): 14055-62, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27156571

ABSTRACT

The quantum dots (QDs) of lead sulphide (PbS) are attractive near-infrared (NIR) active materials and have promising applications in a wide variety of applications. Till date many efforts have been made on optimizing its synthesis; however, current mechanistic understanding involving the nucleation and growth of these QDs has not reached the same level as that for other QDs. In this study, we present a detailed understanding on synthesis mechanism of PbS QDs so as to provide guidance for future QDs synthesis. The synthesis of PbS QDs is largely independent of classical nucleation process and the hot-injection of precursors may not be necessary for the successful synthesis of PbS QDs. The synthesis is basically a growth dominated process and is controlled by the Ostwald ripening of PbS QDs. In addition, reaction temperature and ligand are the key parameters for controlling QD growth. Temperature provides energy for overcoming activation barrier of QD growth while the ligands enhance QD growth via altering the environment for QD growth. Following the mechanism governing the synthesis of PbS QDs, we demonstrate that the size tuning of PbS QDs in ultra-small (<2 nm) can be achieved, which has been typically challenging following the hot injection synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...