Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMJ Open ; 13(4): e068334, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37072367

ABSTRACT

INTRODUCTION: Inactivated, viral vector and mRNA vaccines have been used in the Nepali COVID-19 vaccination programme but there is little evidence on the effectiveness of these vaccines in this setting. The aim of this study is to describe COVID-19 vaccine effectiveness in Nepal and provide information on infections with SARS-CoV-2 variants. METHODS AND ANALYSIS: This is a hospital-based, prospective test-negative case-control study conducted at Patan Hospital, Kathmandu. All patients >18 years of age presenting to Patan Hospital with COVID-19-like symptoms who have received a COVID-19 antigen/PCR test are eligible for inclusion. The primary outcome is vaccine effectiveness of licensed COVID-19 vaccines against laboratory-confirmed COVID-19 disease.After enrolment, information will be collected on vaccine status, date of vaccination, type of vaccine, demographics and other medical comorbidities. The primary outcome of interest is laboratory-confirmed SARS-CoV-2 infection. Cases (positive for SARS-CoV-2) and controls (negative for SARS-CoV-2) will be enrolled in a 1:4 ratio. Vaccine effectiveness against COVID-19 disease will be analysed by comparing vaccination status with SARS-CoV-2 test results.Positive SARS-CoV-2 samples will be sequenced to identify circulating variants and estimate vaccine effectiveness against common variants.Measuring vaccine effectiveness and identifying SARS-CoV-2 variants in Nepal will help to inform public health efforts. Describing disease severity in relation to specific SARS-CoV-2 variants and vaccine status will also inform future prevention and care efforts. ETHICS AND DISSEMINATION: Ethical approval was obtained from the University of Oxford Tropical Ethics Committee (OxTREC) (ref: 561-21) and the Patan Academy of Health Sciences Institutional Review Board (ref: drs2111121578). The protocol and supporting study documents were approved for use by the Nepal Health Research Council (NHRC 550-2021). Results will be disseminated in peer-reviewed journals and to the public health authorities in Nepal.


Subject(s)
COVID-19 , Vaccines , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Case-Control Studies , Nepal/epidemiology , Prospective Studies , Vaccine Efficacy
2.
J Nepal Health Res Counc ; 20(2): 372-376, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36550715

ABSTRACT

BACKGROUND: Rapid detection of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) by real-time polymerase chain reaction (RT-PCR) is the most reliable method used worldwide. Although the incidence of the disease has increased globally, the limited availability of PCR kits has become the major bottleneck for the diagnosis of COVID positive patients. METHODS: Random samples were pooled for two months in group of two-five and tested for SARS-CoV-2. If the pool was negative, all individuals in the pool were reported negative. If the pool was positive, then the individual samples were retested to identify the positive individual. RESULTS: The mean cycle threshold (Ct) value of pooled samples was not significantly different with that of individual samples for N, ORF-1ab and E genes. Also, pooling saved more than 60% of reagents, time and effort, workforce and cost. CONCLUSIONS: In this study, the positivity rate was around 5% and saving of reagent, cost, time and manpower was more than 60%.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2/genetics , Real-Time Polymerase Chain Reaction/methods , Cost-Benefit Analysis , Nepal , Sensitivity and Specificity , Reverse Transcriptase Polymerase Chain Reaction
3.
Pharm Res ; 37(7): 126, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32529417

ABSTRACT

PURPOSE: Efficient and safe vehicle that can enhance gene transfer is still needed. Since intracellular cholesterol is known to have an important role in gene delivery and itraconazole alters intracellular cholesterol trafficking, we investigated the effect of itraconazole on pDNA and siRNA delivery. METHODS: The pDNA and Bcl2 siRNA transfection efficiency was measured by luciferase assay and cytotoxicity. Cellular cholesterol was observed using filipin staining, and intracellular uptake was analyzed by flow cytometry. Lipoplex localization was observed by fluorescent labeling of DNA and lysosome after treatment of itraconazole or co-treatment of itraconazole and bafilomycin A1. RESULTS: Itraconazole enhanced the transfection efficiency of pDNA and siRNA compared to that of control through the accumulation of cholesterol. Bafilomycin A1 diminished the effect of itraconazole on gene delivery and the increment of cholesterol. Itraconazole did not increase the cellular uptake of lipoplex, but increased free pDNA during the endosome-lysosome pathway was observed during the endosome-lysosome pathway. Treating cells with both imipramine and itraconazole caused an additive effect in pDNA and siRNA delivery. CONCLUSIONS: Itraconazole enhanced gene delivery of pDNA and siRNA, and it can be used to potentiate nucleic acid therapeutics.


Subject(s)
DNA/metabolism , Liposomes/chemistry , RNA, Small Interfering/metabolism , Transfection , Cell Line, Tumor , Cholesterol/metabolism , Endosomes/metabolism , Gene Expression Regulation , Gene Transfer Techniques , Genetic Therapy/methods , Humans , Itraconazole/metabolism , Lysosomes/metabolism , Macrolides/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...