Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38947028

ABSTRACT

Background-: Glaucoma is a complex multifactorial disease where apoptosis and inflammation represent two key pathogenic mechanisms. However, the relative contribution of apoptosis versus inflammation in axon degeneration and death of retinal ganglion cells (RGCs) is not well understood. In glaucoma, caspase-8 is linked to RGC apoptosis, as well as glial activation and neuroinflammation. To uncouple these two pathways and determine the extent to which caspase-8-mediated inflammation and/or apoptosis contributes to the death of RGCs, we used the caspase-8 D387A mutant mouse (Casp8 DA/DA ) in which a point mutation in the auto-cleavage site blocks caspase-8-mediated apoptosis but does not block caspase-8-mediated inflammation. Methods-: Intracameral injection of magnetic microbeads was used to elevate the intraocular pressure (IOP) in wild-type, Fas deficient Faslpr, and Casp8 DA/DA mice. IOP was monitored by rebound tonometry. Two weeks post microbead injection, retinas were collected for microglia activation analysis. Five weeks post microbead injection, visual acuity and RGC function were assessed by optometer reflex (OMR) and pattern electroretinogram (pERG), respectively. Retina and optic nerves were processed for RGC and axon quantification. Two- and five-weeks post microbead injection, expression of the necrosis marker, RIPK3, was assessed by qPCR. Results-: Wild-type, Faslpr, and Casp8 DA/DA mice showed similar IOP elevation as compared to saline controls. A significant reduction in both visual acuity and pERG that correlated with a significant loss of RGCs and axons was observed in wild-type but not in Faslpr mice. The Casp8 DA/DA mice displayed a significant reduction in visual acuity and pERG amplitude and loss of RGCs and axons similar to that in wild-type mice. Immunostaining revealed equal numbers of activated microglia, double positive for P2ry12 and IB4, in the retinas from microbead-injected wild-type and Casp8 DA/DA mutant mice. qPCR analysis revealed no induction of RIPK3 in wild-type or Casp8 DA/DA mice at two- or five-weeks post microbead injection. Conclusions-: Our results demonstrate that caspase-8-mediated extrinsic apoptosis is not involved in the death of RGCs in the microbead-induced mouse model of glaucoma implicating caspase-8-mediated inflammation, but not apoptosis, as the driving force in glaucoma progression. Taken together, these results identify the caspase-8-mediated inflammatory pathway as a potential target for neuroprotection in glaucoma.

2.
Cell Reprogram ; 25(6): 288-299, 2023 12.
Article in English | MEDLINE | ID: mdl-38060815

ABSTRACT

Glaucoma, a chronic neurodegenerative disease, is a leading cause of age-related blindness worldwide and characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons. Previously, we developed a novel epigenetic rejuvenation therapy, based on the expression of the three transcription factors Oct4, Sox2, and Klf4 (OSK), which safely rejuvenates RGCs without altering cell identity in glaucomatous and old mice after 1 month of treatment. In the current year-long study, mice with continuous or cyclic OSK expression induced after glaucoma-induced vision damage had occurred were tracked for efficacy, duration, and safety. Surprisingly, only 2 months of OSK fully restored impaired vision, with a restoration of vision for 11 months with prolonged expression. In RGCs, transcription from the doxycycline (DOX)-inducible Tet-On AAV system, returned to baseline 4 weeks after DOX withdrawal. Significant vision improvements remained for 1 month post switching off OSK, after which the vision benefit gradually diminished but remained better than baseline. Notably, no adverse effects on retinal structure or body weight were observed in glaucomatous mice with OSK continuously expressed for 21 months providing compelling evidence of efficacy and safety. This work highlights the tremendous therapeutic potential of rejuvenating gene therapies using OSK, not only for glaucoma but also for other ocular and systemic injuries and age-related diseases.


Subject(s)
Glaucoma , Neurodegenerative Diseases , Mice , Animals , Intraocular Pressure , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/therapy , Glaucoma/therapy , Glaucoma/drug therapy , Retina/metabolism , Genetic Therapy , Disease Models, Animal
3.
Exp Eye Res ; 225: 109273, 2022 12.
Article in English | MEDLINE | ID: mdl-36206859

ABSTRACT

To test whether depletion of microglia in the optic nerve head has a beneficial effect on retinal ganglion cell numbers and function, we depleted microglia by oral administration of the CSF1R antagonist PLX5622. Then, ocular hypertension was induced by unilateral injection of magnetic microbeads into the anterior chamber. Visual function was assessed with pattern electroretinography and measurement of the optomotor reflex. Retinal ganglion cell bodies and axons were counted and gene expression patterns in optic nerve head astrocytes were tested on freshly dissociated astrocytes. PLX5622 efficiently depleted microglia in the retina and the optic nerve head, but about 20% of microglia persisted in the myelinated optic nerve proper even after prolonged exposure to the drug. PLX5622 did not affect ganglion cell function by itself. Elevation of the IOP for four weeks led to the expected decrease in visual acuity and pattern ERG amplitude. Microglia ablation did not affect these parameters. Ganglion cell and axon numbers were counted histologically post mortem. Mice in the microglia depletion group showed a moderate but significantly greater loss of ganglion cells than the control group. At four weeks post microbead injection, gene expression patterns in optic nerve head astrocytes are consistent with an A2 (or neuroprotective) pattern. Microglia depletion blunted the up-regulation of A2 genes in astrocytes. In conclusion, microglia depletion is unlikely to protect retinal ganglion cells in early glaucoma.


Subject(s)
Glaucoma , Ocular Hypertension , Mice , Animals , Retinal Ganglion Cells/pathology , Microglia/metabolism , Glaucoma/metabolism , Ocular Hypertension/metabolism , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...