Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 11(54): 34181-34192, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-35497295

ABSTRACT

In a simple, one-step reaction, we have synthesized a pyridoxal-based chemosensor by reacting tris(hydroxymethyl)aminomethane (TRIS) together with pyridoxal hydrochloride to yield a Schiff-base ligand that is highly selective for the detection of Zn(ii) ion. Both the ligand and the Zn(ii) complex have been characterized by 1H & 13C NMR, ESI-MS, CHN analyses, and X-ray crystallography. The optical properties of the synthesized ligand were investigated in an aqueous buffer solution and found to be highly selective and sensitive toward Zn(ii) ion through a fluorescence turn-on response. The competition studies reveal the response for zinc ion is unaffected by all alkali and alkaline earth metals; and suppressed by Cu(ii) ion. The ligand itself shows a weak fluorescence intensity (quantum yield, Φ = 0.04), and the addition of zinc ion enhanced the fluorescence intensity 12-fold (quantum yield, Φ = 0.48). The detection limit for zinc ion was 2.77 × 10-8 M, which is significantly lower than the WHO's guideline (76.5 µM). Addition of EDTA to a solution containing the ligand-Zn(ii) complex quenched the fluorescence, indicating the reversibility of Zn(ii) binding. Stoichiometric studies indicated the formation of a 2 : 1 L2Zn complex with a binding constant of 1.2 × 109 M-2 (±25%). The crystal structure of the zinc complex shows the same hydrated L2Zn complex, with Zn(ii) ion binding with an octahedral coordination geometry. We also synthesized the copper(ii) complex of the ligand, and the crystal structure showed the formation of a 1 : 1 adduct, revealing 1-dimensional polymeric networks with octahedral coordinated Cu(ii). The ligand was employed as a sensor to detect zinc ion in HEK293 cell lines derived from human embryonic kidney cells grown in tissue culture which showed strong luminescence in the presence of Zn(ii). We believe that the outstanding turn-on response, sensitivity, selectivity, lower detection limit, and reversibility toward zinc ion will find further application in chemical and biological science.

2.
Neuropeptides ; 70: 37-46, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29779845

ABSTRACT

BACKGROUND: Caudal dorsomedial hindbrain detection of hypoglycemia-associated lactoprivation regulates glucose counter-regulation in male rats. In females, estradiol (E) determines hypothalamic neuroanatomical and molecular foci of hindbrain energy sensor activation. This study investigated the hypothesis that E signal strength governs metabolic neuropeptide and counter-regulatory hormone responses to hindbrain lactoprivic stimuli in hypoglycemic female rats. METHODS: Ovariectomized animals were implanted with E-filled silastic capsules [30 (E-30) or 300 µg (E-300)/mL] to replicate plasma concentrations at estrous cycle nadir versus peak levels. E-30 and E-300 rats were injected with insulin or vehicle following initiation of continuous caudal fourth ventricular L-lactate infusion. RESULTS: Hypoglycemic hypercorticosteronemia was greater in E-30 versus E-300 animals. Glucagon and corticosterone outflow was correspondingly fully or partially reversed by hindbrain lactate infusion. Insulin-injected rats exhibited lactate-reversible augmentation of norepinephrine (NE) accumulation in all preoptic/hypothalamic structures examined, excluding the dorsomedial hypothalamic nucleus (DMH) where hindbrain lactate infusion either suppressed (E-30) or enhanced (E-300) NE content. Expression profiles of hypoglycemia-reactive metabolic neuropeptides were normalized (with greater efficacy in E-300 animals) by lactate infusion. DMH RFamide-related peptide-1 and -3, arcuate neuropeptide Y and kisspeptin, and ventromedial nucleus nitric oxide synthase protein responses to hypoglycemia were E dosage-dependent. CONCLUSIONS: Distinct physiological patterns of E secretion characteristic of the female rat estrous cycle elicit differential corticosterone outflow during hypoglycemia, and establish both common and different hypothalamic metabolic neurotransmitter targets of hindbrain lactate deficit signaling. Outcomes emphasize a need for insight on systems-level organization, interaction, and involvement of E signal strength-sensitive neuropeptides in counter-regulatory functions.


Subject(s)
Estradiol/pharmacology , Hypoglycemic Agents/pharmacology , Neuropeptides/metabolism , Rhombencephalon/drug effects , AMP-Activated Protein Kinases/metabolism , Animals , Estradiol/metabolism , Female , Hypoglycemia/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Insulin/pharmacology , Norepinephrine/metabolism , Rats, Sprague-Dawley , Rhombencephalon/metabolism
3.
Neuroscience ; 383: 46-59, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29746990

ABSTRACT

Hindbrain-derived stimuli restrain the gonadotropin-releasing hormone (GnRH)-pituitary luteinizing hormone (LH) reproductive neuroendocrine axis during energy insufficiency. Interruption of food intake, planned or unplanned, is emblematic of modern life. This study investigated the premise that the hindbrain energy sensor 5'-adenosine monophosphate-activated protein kinase (AMPK) inhibits reproductive neuroendocrine function in short term, e.g. 18-h food-deprived (FD) estradiol (E)-implanted ovariectomized female rats. Intra-caudal fourth ventricular administration of the AMPK inhibitor Compound C (Cc) reversed FD-induced inhibition of rostral preoptic (rPO) GnRH protein expression and LH release in animals given E to replicate proestrus (high-E dose-, but not metestrus (low-E dose)-stage plasma steroid levels. FD caused Cc-reversible augmentation or diminution of preoptic norepinephrine (NE) activity in high- versus low-E rats, respectively, and AMPK-independent reductions in hypothalamic NE accumulation in the latter. Nitric oxide (NO) and kisspeptin are key stimulatory signals for the preovulatory LH surge. Here, FD inhibited rPO neuronal nitric oxide synthase protein expression in high-, but not low-E-dosed animals. Lateral ventricular delivery of the NO donor 3-morpholinosydnonimine (SIN-1) reversed inhibitory GnRH and LH responses to FD in high-E rats, and normalized rPO Vglut2, anteroventral periventricular KiSS1, and dorsomedial hypothalamic RFRP-3 mRNA and/or protein profiles. Data show that FD curtails reproductive neuroendocrine outflow by hindbrain AMPK-dependent mechanisms in the presence of peak estrous cycle E levels. Results indicate that neural networks linking this sensor to GnRH neurons likely involve NO signaling, which may function upstream of one or more neurotransmitters identified here by SIN-1-reversible inhibitory responses to FD.


Subject(s)
Adenylate Kinase/metabolism , Food Deprivation/physiology , Gonadotropin-Releasing Hormone/metabolism , Luteinizing Hormone/metabolism , Nitric Oxide/metabolism , Rhombencephalon/metabolism , Animals , Estradiol , Female , Neurosecretory Systems/metabolism , Rats , Rats, Sprague-Dawley
4.
Neuropeptides ; 66: 25-35, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28823463

ABSTRACT

Glucose counter-regulatory dysfunction correlates with impaired activation of the hypothalamic metabolic sensor adenosine 5'-monophosphate-activated protein kinase (AMPK). Hypothalamic AMPK is controlled by hindbrain energy status; we examined here whether hindbrain AMPK regulates hypothalamic AMPK and metabolic neurotransmitter maladaptation to recurring insulin-induced hypoglycemia (RIIH). Brain tissue was harvested after single versus serial insulin (I) dosing for Western blot analysis of AMPK, phospho-AMPK (pAMPK), and relevant biosynthetic enzyme/neuropeptide expression in micro-punch dissected arcuate (ARH), ventromedial (VMH), dorsomedial (DMH) nuclei and lateral hypothalamic area (LHA) tissue. The AMPK inhibitor compound c (Cc) or vehicle was administered to the caudal fourth ventricle ahead of antecedent I injections. RIIH caused site-specific elevation (ARH, VMH, LHA) or reduction (DMH) of total AMPK protein versus acute hypoglycemia; Cc respectively exacerbated or attenuated this response in the ARH and VMH. Hindbrain AMPK correspondingly inhibited or stimulated LHA and DMH pAMPK expression during RIIH. RIIH elicited Cc-reversible augmentation of VMH glutamate decarboxylase profiles, but stimulated (ARH pro-opiomelanocortin; LHA orexin-A) or decreased (VMH nitric oxide synthase) other metabolic neurotransmitters without hindbrain sensor involvement. Results demonstrate acclimated up-regulation of total AMPK protein expression in multiple hypothalamic loci during RIIH, and document hindbrain sensor contribution to amplification of this protein profile in the VMH. Concurrent lack of net change in ARH and VMH tissue pAMPK implies adaptive reductions in local sensor activity, which may/may not reflect positive gain in energy state. It remains unclear if 'glucose-excited' VMH GABAergic and/or ARH pro-opiomelanocortin neurons exhibit AMPK habituation to RIIH, and whether diminished sensor activation in these and other mediobasal hypothalamic neurotransmitter populations may contribute to HAAF.


Subject(s)
Adenylate Kinase/metabolism , Hypoglycemia/metabolism , Hypothalamus/metabolism , Rhombencephalon/metabolism , Animals , Blood Glucose/metabolism , Hypoglycemia/chemically induced , Insulin , Male , Neurons/metabolism , Nitric Oxide Synthase Type I/metabolism , Norepinephrine/metabolism , Phosphorylation , Rats , Rats, Sprague-Dawley
5.
Neuroscience ; 331: 62-71, 2016 09 07.
Article in English | MEDLINE | ID: mdl-27316550

ABSTRACT

Hindbrain dorsal vagal complex A2 noradrenergic signaling represses the pre-ovulatory luteinizing hormone (LH) surge in response to energy deficiency. Insulin-induced hypoglycemia augments A2 neuron adenosine 5'-monophosphate-activated protein kinase (AMPK) activity and estrogen receptor-beta (ERß) expression, coincident with LH surge suppression. We hypothesized that ERß is critical for hypoglycemia-associated patterns of LH secretion and norepinephrine (NE) activity in key reproduction-relevant forebrain structures. The neural mechanisms responsible for tight coupling of systemic energy balance and procreation remain unclear; here, we investigated whether ERß-dependent hindbrain signals also control glucose counter-regulatory responses to hypoglycemia. Gonadal steroid-primed ovariectomized female rats were pretreated by caudal fourth ventricular administration of the ERß antagonist 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol (PHTPP) or vehicle before insulin injection at LH surge onset. Western blot analysis of laser-microdissected A2 neurons revealed hypoglycemic intensification of AMPK activity and dopamine-ß-hydroxylase protein expression; the latter response was attenuated by PHTPP pretreatment. PHTPP regularized LH release, but not preoptic GnRH-I precursor protein expression in insulin-injected rats, and reversed hypoglycemic stimulation of glucagon and corticosterone secretion. Hypoglycemia caused PHTPP-reversible changes in NE and prepro-kisspeptin protein content in the hypothalamic arcuate (ARH), but not anteroventral periventricular nucleus. Results provide novel evidence for ERß-dependent caudal hindbrain regulation of LH and counter-regulatory hormone secretion during hypoglycemia. Observed inhibition of LH likely involves mechanisms at the axon terminal that impede GnRH neurotransmission. Data also show that caudal hindbrain ERß exerts site-specific control of NE activity in forebrain projection sites during hypoglycemia, including the ARH where prepro-kisspeptin may be a target of that signaling.


Subject(s)
Estrogen Receptor beta/antagonists & inhibitors , Estrogen Receptor beta/metabolism , Hypoglycemia/metabolism , Luteinizing Hormone/metabolism , Norepinephrine/metabolism , Rhombencephalon/drug effects , Animals , Estrogen Receptor Modulators/pharmacology , Female , Gonadotropin-Releasing Hormone/metabolism , Neurons/drug effects , Neurons/metabolism , Ovariectomy , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Rats, Sprague-Dawley , Rhombencephalon/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...