Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 37(1): 190-201, 2023 01.
Article in English | MEDLINE | ID: mdl-36435883

ABSTRACT

MLL (KMT2a) translocations are found in ~10% of acute leukemia patients, giving rise to oncogenic MLL-fusion proteins. A common MLL translocation partner is ENL and associated with a poor prognosis in t(11;19) patients. ENL contains a highly conserved N-terminal YEATS domain that binds acetylated histones and interacts with the PAF1c, an epigenetic regulator protein complex essential for MLL-fusion leukemogenesis. Recently, wild-type ENL, and specifically the YEATS domain, was shown to be essential for leukemic cell growth. However, the inclusion and importance of the YEATS domain in MLL-ENL-mediated leukemogenesis remains unexplored. We found the YEATS domain is retained in 84.1% of MLL-ENL patients and crucial for MLL-ENL-mediated leukemogenesis in mouse models. Mechanistically, deletion of the YEATS domain impaired MLL-ENL fusion protein binding and decreased expression of pro-leukemic genes like Eya1 and Meis1. Point mutations that disrupt YEATS domain binding to acetylated histones decreased stem cell frequency and increased MLL-ENL-mediated leukemia latency. Therapeutically, YEATS containing MLL-ENL leukemic cells display increased sensitivity to the YEATS inhibitor SGC-iMLLT compared to control AML cells. Our results demonstrate that the YEATS domain is important for MLL-ENL fusion protein-mediated leukemogenesis and exposes an "Achilles heel" that may be therapeutically targeted for treating t(11;19) patients.


Subject(s)
Histones , Leukemia, Myeloid, Acute , Mice , Animals , Histones/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Leukemia, Myeloid, Acute/genetics , Translocation, Genetic , Epigenesis, Genetic , Stem Cells/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism
2.
J Org Chem ; 86(16): 11086-11099, 2021 08 20.
Article in English | MEDLINE | ID: mdl-33444024

ABSTRACT

The first asymmetric total synthesis of C(9)-S-(+)-taumycin A is now reported using an approach that targeted both C(9) diastereomers concurrently. To facilitate this work, we called upon the symmetrical nature of a C(5)-C(13) side-chain intermediate and exploited orthogonal protecting groups as a tactic to access both stereoisomers from a single chiral, nonracemic intermediate. In addition to our successful approach, several minor detours that helped refine our strategy and a detailed analysis of 1H NMR data will be discussed. Select compounds included in this work were screened against the NCI60 cell line panel and displayed modest growth inhibition activity.


Subject(s)
Depsipeptides , Stereoisomerism
3.
J Med Chem ; 63(5): 2489-2510, 2020 03 12.
Article in English | MEDLINE | ID: mdl-31971799

ABSTRACT

Anti-apoptotic Bcl-2 family proteins are overexpressed in a wide spectrum of cancers and have become well validated therapeutic targets. Cancer cells display survival dependence on individual or subsets of anti-apoptotic proteins that could be effectively targeted by multimodal inhibitors. We designed a 2,5-substituted benzoic acid scaffold that displayed equipotent binding to Mcl-1 and Bfl-1. Structure-based design was guided by several solved cocrystal structures with Mcl-1, leading to the development of compound 24, which binds both Mcl-1 and Bfl-1 with Ki values of 100 nM and shows appreciable selectivity over Bcl-2/Bcl-xL. The selective binding profile of 24 was translated to on-target cellular activity in model lymphoma cell lines. These studies lay a foundation for developing more advanced dual Mcl-1/Bfl-1 inhibitors that have potential to provide greater single agent efficacy and broader coverage to combat resistance in several types of cancer than selective Mcl-1 inhibitors alone.


Subject(s)
Antineoplastic Agents/pharmacology , Benzoic Acid/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Benzoic Acid/chemistry , Cell Line, Tumor , Humans , Lymphoma/drug therapy , Lymphoma/metabolism , Mice , Mice, Transgenic , Minor Histocompatibility Antigens/metabolism , Molecular Docking Simulation , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...