Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Reports ; 17(10): 2203-2219, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36150382

ABSTRACT

We have developed an efficient approach to generate functional induced dopaminergic (DA) neurons from adult human dermal fibroblasts. When performing DA neuronal conversion of patient fibroblasts with idiopathic Parkinson's disease (PD), we could specifically detect disease-relevant pathology in these cells. We show that the patient-derived neurons maintain age-related properties of the donor and exhibit lower basal chaperone-mediated autophagy compared with healthy donors. Furthermore, stress-induced autophagy resulted in an age-dependent accumulation of macroautophagic structures. Finally, we show that these impairments in patient-derived DA neurons leads to an accumulation of phosphorylated alpha-synuclein, the classical hallmark of PD pathology. This pathological phenotype is absent in neurons generated from induced pluripotent stem cells from the same patients. Taken together, our results show that direct neural reprogramming can be used for obtaining patient-derived DA neurons, which uniquely function as a cellular model to study age-related pathology relevant to idiopathic PD.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Adult , Autophagy/physiology , Dopaminergic Neurons/pathology , Humans , Induced Pluripotent Stem Cells/pathology , Parkinson Disease/genetics , alpha-Synuclein/genetics
2.
J Parkinsons Dis ; 11(2): 515-528, 2021.
Article in English | MEDLINE | ID: mdl-33361611

ABSTRACT

BACKGROUND: Human induced pluripotent stem cells (hiPSCs) have been proposed as an alternative source for cell replacement therapy for Parkinson's disease (PD) and they provide the option of using the patient's own cells. A few studies have investigated transplantation of patient-derived dopaminergic (DA) neurons in preclinical models; however, little is known about the long-term integrity and function of grafts derived from patients with PD. OBJECTIVE: To assess the viability and function of DA neuron grafts derived from a patient hiPSC line with an α-synuclein gene triplication (AST18), using a clinical grade human embryonic stem cell (hESC) line (RC17) as a reference control. METHODS: Cells were differentiated into ventral mesencephalic (VM)-patterned DA progenitors using an established GMP protocol. The progenitors were then either terminally differentiated to mature DA neurons in vitro or transplanted into 6-hydroxydopamine (6-OHDA) lesioned rats and their survival, maturation, function, and propensity to develop α-synuclein related pathology, were assessed in vivo. RESULTS: Both cell lines generated functional neurons with DA properties in vitro. AST18-derived VM progenitor cells survived transplantation and matured into neuron-rich grafts similar to the RC17 cells. After 24 weeks, both cell lines produced DA-rich grafts that mediated full functional recovery; however, pathological changes were only observed in grafts derived from the α-synuclein triplication patient line. CONCLUSION: This data shows proof-of-principle for survival and functional recovery with familial PD patient-derived cells in the 6-OHDA model of PD. However, signs of slowly developing pathology warrants further investigation before use of autologous grafts in patients.


Subject(s)
Induced Pluripotent Stem Cells , Oxidopamine/pharmacology , Parkinson Disease , Synucleinopathies , alpha-Synuclein/chemistry , Animals , Dopaminergic Neurons/metabolism , Humans , Oxidopamine/chemistry , Parkinson Disease/therapy , Rats , alpha-Synuclein/genetics
3.
Proc Natl Acad Sci U S A ; 117(26): 15209-15220, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32541058

ABSTRACT

Preclinical assessment of the therapeutic potential of dopamine (DA) neuron replacement in Parkinson's disease (PD) has primarily been performed in the 6-hydroxydopamine toxin model. While this is a good model to assess graft function, it does not reflect the pathological features or progressive nature of the disease. In this study, we establish a humanized transplantation model of PD that better recapitulates the main disease features, obtained by coinjection of preformed human α-synuclein (α-syn) fibrils and adeno-associated virus (AAV) expressing human wild-type α-syn unilaterally into the rat substantia nigra (SN). This model gives rise to DA neuron dysfunction and progressive loss of DA neurons from the SN and terminals in the striatum, accompanied by extensive α-syn pathology and a prominent inflammatory response, making it an interesting and relevant model in which to examine long-term function and integrity of transplanted neurons in a PD-like brain. We transplanted DA neurons derived from human embryonic stem cells (hESCs) into the striatum and assessed their survival, growth, and function over 6 to 18 wk. We show that the transplanted cells, even in the presence of ongoing pathology, are capable of innervating the DA-depleted striatum. However, on closer examination of the grafts, we found evidence of α-syn pathology in the form of inclusions of phosphorylated α-syn in a small fraction of the grafted DA neurons, indicating host-to-graft transfer of α-syn pathology, a phenomenon that has previously been observed in PD patients receiving fetal tissue grafts but has not been possible to demonstrate and study in toxin-based animal models.


Subject(s)
Embryonic Stem Cells/physiology , Stem Cell Transplantation , Synucleinopathies , alpha-Synuclein/metabolism , Animals , Cell Survival , Dopaminergic Neurons/metabolism , Down-Regulation , Female , Humans , Inflammation , Nerve Degeneration , Rats , Rats, Sprague-Dawley , Substantia Nigra/cytology
4.
J Vis Exp ; (132)2018 02 05.
Article in English | MEDLINE | ID: mdl-29443113

ABSTRACT

Induced neurons (iNs), the product of somatic cells directly converted to neurons, are a way to obtain patient-derived neurons from tissue that is easily accessible. Through this route, mature neurons can be obtained in a matter of a few weeks. Here, we describe a straightforward and rapid one-step protocol to obtain iNs from dermal fibroblasts obtained through biopsy samples from adult human donors. We explain each step of the process, including the maintenance of the dermal fibroblasts, the freezing procedure to build a stock of the cell line, seeding of the cells for reprogramming, as well as the culture conditions during the conversion process. In addition, we describe the preparation of glass coverslips for electrophysiological recordings, long-term coating conditions, and fluorescence activated cell sorting (FACS). We also illustrate examples of the results to be expected. The protocol described here is easy to perform and can be applied to human fibroblasts derived from human skin biopsies from patients with various different diagnoses and ages. This protocol generates a sufficient amount of iNs which can be used for a wide array of biomedical applications, including disease modeling, drug screening, and target validation.


Subject(s)
Cellular Reprogramming/physiology , Fibroblasts/metabolism , Neurons/metabolism , Cell Culture Techniques , Fibroblasts/cytology , Humans
5.
Stem Cell Reports ; 9(3): 742-751, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28844658

ABSTRACT

Converting resident glia into functional and subtype-specific neurons in vivo by delivering reprogramming genes directly to the brain provides a step forward toward the possibility of treating brain injuries or diseases. To date, it has been possible to obtain GABAergic and glutamatergic neurons via in vivo conversion, but the precise phenotype of these cells has not yet been analyzed in detail. Here, we show that neurons reprogrammed using Ascl1, Lmx1a, and Nurr1 functionally mature and integrate into existing brain circuitry and that the majority of the reprogrammed neurons have properties of fast-spiking, parvalbumin-containing interneurons. When testing different combinations of genes for neural conversion with a focus on pro-neural genes and dopamine fate determinants, we found that functional neurons can be generated using different gene combinations and in different brain regions and that most of the reprogrammed neurons become interneurons, independently of the combination of reprogramming factors used.


Subject(s)
Action Potentials , Cellular Reprogramming , Interneurons/metabolism , Neuroglia/metabolism , Parvalbumins/metabolism , Animals , Cell Differentiation , Denervation , Dopamine/metabolism , Gene Expression Regulation , Mice , Neostriatum/cytology , Phenotype , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...