Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Wirel Pers Commun ; 130(3): 1963-1991, 2023.
Article in English | MEDLINE | ID: mdl-37206636

ABSTRACT

The COVID-19 has affected and threatened the world health system very critically throughout the globe. In order to take preventive actions by the agencies in dealing with such a pandemic situation, it becomes very necessary to develop a system to analyze the impact of environmental parameters on the spread of this virus. Machine learning algorithms and artificial Intelligence may play an important role in the detection and analysis of the spread of COVID-19. This paper proposed a twinned gradient boosting machine (GBM) to analyze the impact of environmental parameters on the spread, recovery, and mortality rate of this virus in India. The proposed paper exploited the four weather parameters (temperature, humidity, atmospheric pressure, and wind speed) and two air pollution parameters (PM2.5 and PM10) as input to predict the infection, recovery, and mortality rate of its spread. The algorithm of the GBM model has been optimized in its four distributions for best performance by tuning its parameters. The performance of the GBM is reported as excellent (where R2 = 0.99) in training for the combined dataset comprises all three outcomes i.e. infection, recovery and mortality rates. The proposed approach achieved the best prediction results for the state, which is worst affected and highest variation in the atmospheric factors and air pollution level.

2.
Appl Intell (Dordr) ; 51(5): 2727-2739, 2021.
Article in English | MEDLINE | ID: mdl-34764559

ABSTRACT

Meteorological parameters were crucial and effective factors in past infectious diseases, like influenza and severe acute respiratory syndrome (SARS), etc. The present study targets to explore the association between the coronavirus disease 2019 (COVID-19) transmission rates and meteorological parameters. For this purpose, the meteorological parameters and COVID-19 infection data from 28th March 2020 to 22nd April 2020 of different states of India have been compiled and used in the analysis. The gradient boosting model (GBM) has been implemented to explore the effect of the minimum temperature, maximum temperature, minimum humidity, and maximum humidity on the infection count of COVID-19. The optimal performance of the GBM model has been achieved after tuning its parameters. The GBM results in the best accuracy of R2 = 0.95 for prediction of active cases in Maharashtra, and R2 = 0.98 for prediction of recovered cases of COVID-19 in Kerala and Rajasthan, India.

SELECTION OF CITATIONS
SEARCH DETAIL
...