Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 195(6): 758, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37248306

ABSTRACT

Antimony (Sb) has been classified as a high-priority contaminant in the environment. Sb contamination resulting from the use of antimony-containing compounds in industry necessitates the development of efficient methods to remove it from water and wastewater. Adsorption is a highly efficient and reliable method for pollutants removal owing to its availability, recyclability, and low cost. Recently, carbonaceous materials and their applications for the removal of Sb from the aqueous matrices have received special attention worldwide. Herein, this review systematically summarizes the occurrence and exposure of Sb in the environment and on human health, respectively. Different carbon-based adsorbents have been classified for the adsorptive removal of Sb and their adsorption characteristics have been delineated. Recent development in the adsorption performance of the adsorbent materials for improving the Sb removal from the aqueous medium has been outlined. Further, to develop an understanding of the effect of different parameters like pH, competitive ions, and dissolved ions for Sb adsorption and subsequent removal have been discussed. A retrospective analysis of literature was conducted to present the adsorption behavior and underlying mechanisms involved in the removal of Sb using various adsorbents. Moreover, this study has identified emerging research gaps and emphasized the need for developing modified/engineered carbonaceous adsorbents to enhance Sb adsorption from various aqueous matrices.


Subject(s)
Water Pollutants, Chemical , Water , Humans , Water/chemistry , Wastewater , Antimony , Carbon , Retrospective Studies , Water Pollutants, Chemical/analysis , Environmental Monitoring , Adsorption
2.
Sci Total Environ ; 853: 158562, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36089037

ABSTRACT

Rising global temperature, pollution load, and energy crises are serious problems, recently facing the world. Scientists around the world are ambitious to find eco-friendly and cost-effective routes for resolving these problems. Biochar has emerged as an agent for environmental remediation and has proven to be the effective sorbent to inorganic and organic pollutants in water and soil. Endowed with unique attributes such as porous structure, larger specific surface area (SSA), abundant surface functional groups, better cation exchange capacity (CEC), strong adsorption capacity, high environmental stability, embedded minerals, and micronutrients, biochar is presented as a promising material for environmental management, reduction in greenhouse gases (GHGs) emissions, soil management, and soil fertility enhancement. Therefore, the current review covers the influence of key factors (pyrolysis temperature, retention time, gas flow rate, and reactor design) on the production yield and property of biochar. Furthermore, this review emphasizes the diverse application of biochar such as waste management, construction material, adsorptive removal of petroleum and oil from aqueous media, immobilization of contaminants, carbon sequestration, and their role in climate change mitigation, soil conditioner, along with opportunities and challenges. Finally, this review discusses the evaluation of biochar standardization by different international agencies and their economic perspective.


Subject(s)
Environmental Pollutants , Greenhouse Gases , Petroleum , Soil/chemistry , Biodiversity , Temperature , Charcoal/chemistry , Water , Micronutrients
3.
Chemosphere ; 238: 124988, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31645266

ABSTRACT

Over the past three decades, the occurrence of high concentrations of arsenic (As) in drinking-water and its subsequent poisoning in rice has been recognized as a major public-health concern globally, especially in Ganga Delta Plain with more than 80 million peoples in serious As exposure far beyond than its allowable limit. An extensive field study was conducted for consecutive four years viz. 2013 to 2016, introducing a process of intermittent irrigation pattern comparing to the conventional practice of rice cultivation in India. The practice provides a combination of aerobic and anaerobic irrigation resulting better rice productivity with lesser arsenic mobility and accumulation in rice grains. This present research finding clearly points out to the marked reduction of arsenic load from average 1.6 mg/kg to 0.5 mg/kg in rice grain, much closer to FAO/WHO prescribed safe limit and in the continuous practice of proposed agricultural strategy resulting in a gradual decrease of 15% bioavailable arsenic in each year. Total productivity (in kg/hectare) also increased by 540 kg/year in boro and 340 kg/year in amon subsequently achieving the prescribed safe limit of As in grain.


Subject(s)
Arsenic/analysis , Drinking Water/chemistry , Edible Grain/chemistry , Oryza/chemistry , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Agricultural Irrigation/methods , India , Water Supply
4.
Sci Rep ; 7: 39515, 2017 01 04.
Article in English | MEDLINE | ID: mdl-28051105

ABSTRACT

Plastic in any form is a nuisance to the well-being of the environment. The 'pestilence' caused by it is mainly due to its non-degradable nature. With the industrial boom and the population explosion, the usage of plastic products has increased. A steady increase has been observed in the use of plastic products, and this has accelerated the pollution. Several attempts have been made to curb the problem at large by resorting to both chemical and biological methods. Chemical methods have only resulted in furthering the pollution by releasing toxic gases into the atmosphere; whereas; biological methods have been found to be eco-friendly however they are not cost effective. This paves the way for the current study where fungal isolates have been used to degrade polyethylene sheets (HDPE, LDPE). Two potential fungal strains, namely, Penicillium oxalicum NS4 (KU559906) and Penicillium chrysogenum NS10 (KU559907) had been isolated and identified to have plastic degrading abilities. Further, the growth medium for the strains was optimized with the help of RSM. The plastic sheets were subjected to treatment with microbial culture for 90 days. The extent of degradation was analyzed by, FE-SEM, AFM and FTIR. Morphological changes in the plastic sheet were determined.


Subject(s)
Biodegradation, Environmental , Penicillium chrysogenum/metabolism , Polyethylene/metabolism , Data Interpretation, Statistical , Environmental Pollutants/chemistry , Environmental Pollutants/metabolism , Microscopy, Atomic Force , Penicillium chrysogenum/isolation & purification , Polyethylene/chemistry , Soil Microbiology
6.
J Hazard Mater ; 324(Pt B): 526-534, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27865606

ABSTRACT

In the Bengal deltaic region, the shallow groundwater laced with arsenic is used for irrigation frequently and has elevated the soil arsenic in agricultural soil. However, the areas with seasonal flooding reduce arsenic in top layers of the soils. Study shows arsenic accumulation in the deeper soil layers with time in the contaminated agricultural soil (19.40±0.38mg/kg in 0-5cm, 27.17±0.44mg/kg in 5-10cm and 41.24±0.48mg/kg in 10-15cm) in 2013 whereas depletion in 2014 and its buildup in different parts of monsoon rice plant in Nadia, India. Principal Component Analysis and Cluster Analysis were performed, and Enrichment Factor was calculated to identify the sources of arsenic in the soil. Potential Ecological Risk was also calculated to estimate the extent of risk posed by arsenic in soil, along with the potential risk of dietary arsenic exposure. Remarkably, the concentration of arsenic detected in the rice grain showed average value of 1.4mg/kg in 2013 which has increased to 1.6 in 2014, both being above the permissible limit (1mg/kg). These results indicate that monsoon flooding enhances the infiltration of arsenic in the deeper soil layer, which lead to further contamination of shallow groundwater.


Subject(s)
Arsenic/analysis , Oryza/growth & development , Soil Pollutants/analysis , Water Pollutants, Radioactive/analysis , Agricultural Irrigation , Dietary Exposure/analysis , Edible Grain/chemistry , Edible Grain/growth & development , Groundwater/chemistry , Humans , India , Oryza/chemistry , Rain , Soil/standards
7.
Biomed Res Int ; 2015: 365672, 2015.
Article in English | MEDLINE | ID: mdl-26613082

ABSTRACT

Nanotechnology has proven its competence in almost all possible fields we are aware of. However, today nanotechnology has evolved in true sense by contributing to a very large extent to the food industry. With the growing number of mouths to feed, production of food is not adequate. It has to be preserved in order to reach to the masses on a global scale. Nanotechnology made the idea a reality by increasing the shelf life of different kinds of food materials. It is not an entirely full-proof measure; however it has brought down the extent of wastage of food due to microbial infestation. Not only fresh food but also healthier food is being designed with the help of nano-delivery systems which act as a carrier for the food supplements. There are regulations to follow however as several of them pose serious threats to the wellbeing of the population. In coming days, newer modes of safeguarding food are going to be developed with the help of nanotechnology. In this paper, an overview has been given of the different methods of food processing, packaging, and preservation techniques and the role nanotechnology plays in the food processing, packaging, and preservation industry.


Subject(s)
Food Handling/methods , Food Industry/methods , Food Packaging/methods , Food Preservation/methods , Nanotechnology/methods , Food , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...