Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cureus ; 15(11): e49120, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38130523

ABSTRACT

Background This study investigates the temporal patterns of diagnosed diabetes cases among adults aged 18 and above in the United States from 2000 to 2021, using data from the U.S. Diabetes Surveillance System (USDDS) database. The study analyzed variations in diagnosed diabetes cases based on gender, age, education, location, and race to provide insights into the changing disease burden over two decades. Methods A retrospective observational design was employed in analyzing data from the USDDS database. The study population comprised adults aged 18 and above with diagnosed diabetes. Descriptive statistical analysis and subgroup comparisons were performed to identify temporal trends and disparities in diagnosed diabetes cases among different demographic groups. Results The study uncovered significant temporal patterns in diagnosed diabetes cases among US adults. Males consistently reported higher diabetes cases (8.44%) than females (7.45%). Variations existed among age groups, with the 65-74 age group having the highest cases (19.69%) and the 18-44 age group having the lowest cases (2.34%). Disparities by race/ethnicity were evident, with non-Hispanic black individuals (11.80%) and Hispanics (11.07%) having the highest percentages, while Asians (7.84%) and whites (6.81%) had lower rates. Distinct temporal patterns emerged based on education levels, with the less than high school education group having the highest cases (11.77%), followed by those with a high school education (8.50%), and the lowest among those with higher than a high school education (6.60%). Conclusion The study has revealed a complex and evolving landscape of this chronic disease. Over these two decades, we observed significant fluctuations, with an overall upward trend in diagnosed diabetes cases. These findings underscore the need for a multifaceted approach to tackle diabetes effectively. Tailored interventions that consider age, gender, education, and geographic location are crucial to addressing the observed disparities in diabetes prevalence.

2.
Vaccine ; 41(42): 6327-6338, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37689543

ABSTRACT

Porcine Reproductive and Respiratory Syndrome (PRRS) is an important viral disease of swine that causes significant mortality in piglets and production losses in adult pigs. In this study, we investigated the protective efficacy of an inactivated PRRS virus vaccine candidate and evaluated the differences in PRRSV specific anamnestic response in piglets when challenged with live PRRSV at two different intervals post-immunization. Six-week-old piglets were immunized intramuscularly with an inactivated, Montanide ISA-206 adjuvanted Indian PRRSV isolate, followed by a booster dose at 21 days post-immunization. Homologous live PRRS virus challenge was done on 60 and 180 days post-booster (dpb). We assessed humoral and cell-mediated immune responses at various intervals post-immunization and after challenge. Viraemia, virus shedding in nasal secretions and lung lesion scores were studied to assess the efficacy of the vaccine candidate. All the immunized pigs developed PRRSV-specific antibodies upon booster dose administration. Neutralizing antibody (NA) titres before challenge, in most animals, ranged between 0 and 4. Potentially protective NA titre of 8 was observed in serum of seven out of the 12 immunized piglets after challenge, across the immunized groups. A significant increase in the mean T-helper, T-cytotoxic, memory or activated T-helper and NK cell populations was observed in immunized piglets challenged at 180 dpb, from 4 to 11 dpc, 5 to 11 dpc, 5 to 7 dpc and 6 to 11 dpc, respectively as compared to the challenge controls. Protective efficacy of the inactivated PRRSV antigen against the homologous virus challenge was evidenced by earlier onset of PRRSV specific virus neutralizing antibodies and cell mediated immune responses, reduced viremia, nasal virus shedding and severity of lung lesions in immunized piglets as compared to unimmunized controls post-challenge. Our results indicated that the inactivated PRRSV antigen elicited better virus specific anamnestic immune responses in piglets when challenged at six months after the single booster dose, due to age related increase in antigen-specific memory T helper cell responses, as compared to those challenged at 2 months post booster.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Vaccines , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/prevention & control , Vaccines, Inactivated , Antibodies, Viral , Viremia/prevention & control , Immunity
3.
AMB Express ; 13(1): 90, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37639159

ABSTRACT

Exosomes, a subpopulation of Extracellular vesicles (EVs), are cell-secreted vesicles found in the majority of biological fluids, including breast milk, tears, sweat, blood and, urine. The density and size of these vesicles depend on a variety of factors, including age, gender and the biological condition of the individual. Researchers are now focusing on the selective extraction of exosomes from bodily fluids due to the unique biomolecule composition of exosomes, which is critical for diagnosis, disease, and regeneration. Furthermore, current approaches for exosome isolation have limitations, necessitating the development of a simpler and more effective technique to achieve this goal. In this study, we investigated a quick and effective strategy for isolating exosomes from serum using a bench-top centrifuge. This was accomplished by raising antibodies against exosome surface tetraspanins (CD9, CD63 & CD81) in Leghorn chickens due to their phylogenetic distance from humans and cost-effectiveness for commercial use. In order to separate exosomes from a complex biological fluid, the antibodies were further coupled with gold nanoparticles (AuNPs). The findings were validated using ELISA, spectrophotometry, and transmission electron microscopy (TEM). Using this technique, exosome isolation from serum was achieved rapidly and these were captured by using anti CD63 antibodies bound to AuNPs. To summarize, exosomes were purified from serum using anti-CD63 antibodies conjugated to gold nanoparticles (IgY@AuNPs). Consequently, the approach for exosome isolation from biological fluid could be useful for clinically monitoring the biological state of the patients.

4.
Infect Genet Evol ; 94: 105005, 2021 10.
Article in English | MEDLINE | ID: mdl-34293481

ABSTRACT

We report here a targeted risk-based study to investigate the presence of influenza A viruses at the migratory-wild-domestic bird interface across the major wetlands of central India's Maharashtra state during the winter migration season. The H9N2 viruses have been isolated and confirmed in 3.86% (33/854) of the fecal samples of resident birds. To investigate the genetic pools of H9N2 circulating in resident birds, we sequenced two isolates of H9N2 from distant wetlands. Sequence and phylogenetic analyses have shown that these viruses are triple reassortants, with HA, NA, NP, and M genes belonging to G1 sub-lineage (A/quail/Hong Kong/G1/1997), PB2, PB1, and NS genes originating from the prototype Eurasian lineage (A/mallard/France/090360/2009) and PA gene deriving from Y439/Korean-like (A/duck/Hong Kong/Y439/97) sub-lineage. It was confirmed not only that four of their gene segments had a high genetic association with the zoonotic H9N2 virus, A/Human/India/TCM2581/2019, but also that they had many molecular markers associated with mammalian adaptation and enhanced virulence in mammals including the unique multiple basic amino acids, KSKR↓GLF at the HA cleavage site, and analog N-and O-glycosylation patterns on HA with that of the zoonotic H9N2 virus. Furthermore, future experiments would be to characterize these isolates biologically to address the public health concern. Importantly, due to the identification of these viruses at a strategic geographical location in India (a major stop-over point in the Central Asian flyway), these novel viruses also pose a possible threat to be exported to other regions via migratory/resident birds. Consequently, systematic investigation and active monitoring are a prerequisite for identifying and preventing the spread of viruses of zoonotic potential by enforcing strict biosecurity measures.


Subject(s)
Birds , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/epidemiology , Adaptation, Biological , Animals , Biosecurity , India/epidemiology , Influenza in Birds/virology , Mammals , Prevalence , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...