Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1360369, 2024.
Article in English | MEDLINE | ID: mdl-38524130

ABSTRACT

Introduction: High sustained anti-rhGAA antibody titers (HSAT; ≥12,800) are directly linked to reduced efficacy of enzyme replacement therapy (ERT) and subsequent clinical deterioration in infantile-onset Pompe disease (IOPD). We have previously demonstrated the safety and effectiveness of a bortezomib-based immune-tolerance induction (ITI) regimen (bortezomib, rituximab, methotrexate, and IVIG) in eliminating HSAT. Methods: Here, we describe two IOPD cases (patients 6 and 8) who developed HSAT at 8 and 10 weeks on ERT despite transient low-dose methotrexate ITI administration in the ERT-naïve setting and were treated with a bortezomib-based ITI regimen, and we compare their courses to a series of six historical patients (patients 1-5, and 7) with a similar presentation who exemplify our evolving approach to treatment. Results: In total, patients 6 and 8 received 16 and 8 doses of bortezomib (4 doses=1 cycle) respectively reducing titers from 25,600 to seronegative, but differences in the course of their therapy were instructive regarding the optimal approach to initial treatment of HSAT; specifically, patient 6 was treated initially with only a single course of bortezomib rescue therapy, while patient 8 received two back-to-back courses. Patient 8 received IVIG therapy throughout the immunosuppression whereas patient 6 received IVIG therapy and was switched to subcutaneous IgG replacement. Patient 6 had a transient reduction in anti-rhGAA antibodies, after receiving a single initial cycle of bortezomib, but had a recurrence of high anti-rhGAA antibody titer after 160 weeks that required 3 additional cycles of bortezomib to ultimately achieve tolerance. In contrast, patient 8 achieved tolerance after being given two consecutive cycles of bortezomib during their initial treatment and had B cell recovery by week 54. Since the reduction in anti-rhGAA antibodies, both patients are doing well clinically, and have decreasing ALT, AST, and CK. No major infections leading to interruption of treatment were observed in either patient. The bortezomib-based ITI was safe and well-tolerated, and patients continue to receive ERT at 40 mg/kg/week. Discussion: These case studies and our previous experience suggest that to achieve an effective reduction of anti-rhGAA antibodies in the setting of HSAT, bortezomib should be initiated at the earliest sign of high anti-rhGAA antibodies with a minimum of two consecutive cycles as shown in the case of patient 8. It is important to note that, despite initiation of ERT at age 2.3 weeks, patient 8 quickly developed HSAT. We recommend close monitoring of anti-rhGAA antibodies and early intervention with ITI as soon as significantly elevated anti-rhGAA antibody titers are noted.


Subject(s)
Glycogen Storage Disease Type II , Humans , Infant, Newborn , Bortezomib/therapeutic use , Glycogen Storage Disease Type II/diagnosis , Immunoglobulins, Intravenous/therapeutic use , Immunomodulation , Methotrexate/therapeutic use , Treatment Outcome
2.
Future Oncol ; 17(29): 3873-3880, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34263659

ABSTRACT

The mortality and morbidity rates for prostate cancer have recently increased to alarming levels, rising higher than lung cancer. Due to a lack of drug targets and molecular probes, existing theranostic techniques are limited. Human LIN28A and its paralog LIN28B overexpression are associated with a number of tumors resulting in a remarkable increase in cancer aggression and poor prognoses. The current review aims to highlight recent work identifying the key roles of LIN28A and LIN28B in prostate cancer, and to instigate further preclinical and clinical research in this important area.


Subject(s)
Molecular Targeted Therapy , Precision Medicine , Prostatic Neoplasms/therapy , RNA-Binding Proteins/metabolism , Humans , Male , Prostatic Neoplasms/pathology
3.
Life Sci ; 278: 119632, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34019900

ABSTRACT

Diabetes epidemiological quantities are demonstrating one of the most important communities' health worries. The essential diabetic difficulties are including cardiomyopathy, nephropathy, inflammation, and retinopathy. Despite developments in glucose decreasing treatments and drugs, these diabetic complications are still ineffectively reversed or prohibited. Several signaling and molecular pathways are vital targets in the new therapies of diabetes. This review assesses the newest researches about the key molecules and signaling pathways as targets of molecular pharmacology in diabetes and diseases related to it for better treatment based on molecular sciences. The disease is not cured by current pharmacological strategies for type 2 diabetes. While several drug combinations are accessible that can efficiently modulate glycemia and mitigate long-term complications, these agents do not reverse pathogenesis, and in practice, they are not established to modify the patient's specific molecular profiling. Therapeutic companies have benefited from human genetics. Genome exploration, which is agnostic to the information that exists, has revealed tens of loci that impact glycemic modulation. The physiological report has begun to examine subtypes of diseases, illustrate heterogeneity and propose biochemical therapeutic pathways.


Subject(s)
Diabetes Complications/drug therapy , Diabetes Mellitus/drug therapy , Drug Discovery , Molecular Targeted Therapy , Signal Transduction/drug effects , Animals , Diabetes Complications/genetics , Diabetes Complications/metabolism , Diabetes Complications/pathology , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use
4.
Acta Pharm Sin B ; 10(11): 2075-2109, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33304780

ABSTRACT

In many ways, cancer cells are different from healthy cells. A lot of tactical nano-based drug delivery systems are based on the difference between cancer and healthy cells. Currently, nanotechnology-based delivery systems are the most promising tool to deliver DNA-based products to cancer cells. This review aims to highlight the latest development in the lipids and polymeric nanocarrier for siRNA delivery to the cancer cells. It also provides the necessary information about siRNA development and its mechanism of action. Overall, this review gives us a clear picture of lipid and polymer-based drug delivery systems, which in the future could form the base to translate the basic siRNA biology into siRNA-based cancer therapies.

5.
Curr Drug Deliv ; 17(2): 101-111, 2020.
Article in English | MEDLINE | ID: mdl-31906837

ABSTRACT

BACKGROUND: Nucleus targeted drug delivery provides several opportunities for the treatment of fatal diseases such as cancer. However, the complex nucleocytoplasmic barriers pose significant challenges for delivering a drug directly and efficiently into the nucleus. Aptamers representing singlestranded DNA and RNA qualify as next-generation highly advanced and personalized medicinal agents that successfully inhibit the expression of certain proteins; possess extraordinary gene-expression for manoeuvring the diseased cell's fate with negligible toxicity. In addition, the precisely directed aptamers to the site of action present a tremendous potential to reach the nucleus by escaping the ensuing barriers to exhibit a better drug activity and gene expression. OBJECTIVE: This review epigrammatically highlights the significance of targeted drug delivery and presents a comprehensive description of the principal barriers faced by the nucleus targeted drug delivery paradigm and ensuing complexities thereof. Eventually, the progress of nucleus targeting with nucleic acid aptamers and success achieved so far have also been reviewed. METHODS: Systematic literature search was conducted of research published to date in the field of nucleic acid aptamers. CONCLUSION: The review specifically points out the contribution of individual aptamers as the nucleustargeting agent rather than aptamers in conjugated form.


Subject(s)
Aptamers, Nucleotide , Cell Nucleus/metabolism , Drug Delivery Systems , Animals , Humans
6.
Inflammation ; 42(6): 2032-2036, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31377947

ABSTRACT

Hypoxia inducible factor (HIF)-prolyl hydroxylase (PHD) inhibitors are shown to be protective in several models of inflammatory bowel disease (IBD). However, these non-selective inhibitors are known to inhibit all the three isoforms of PHD, i.e. PHD-1, PHD-2 and PHD-3. In the present report, we investigated the associated changes in levels of PHDs during the development and recovery of chemically induced colitis in mice. The results indicated that in the experimental model of murine colitis, levels of both, PHD-1 and PHD-2 were found to be increased with the progression of the disease; however, the level of PHD-3 remained the same in group of healthy controls and mice with colitis. Thus, the findings advocated that inhibitors, which inhibited all three isoforms of PHD could not be ideal therapeutics for IBD since PHD-3 is required for normal gut function. Hence, this necessitates the development of new compounds capable of selectively inhibiting PHD-1 and PHD-2 for effective treatment of IBD.


Subject(s)
Colitis/drug therapy , Disease Progression , Prolyl Hydroxylases/metabolism , Prolyl-Hydroxylase Inhibitors/therapeutic use , Animals , Colitis/enzymology , Colitis/pathology , Hypoxia-Inducible Factor-Proline Dioxygenases , Inflammatory Bowel Diseases/drug therapy , Mice , Protein Isoforms
7.
Nucleic Acid Ther ; 26(5): 286-298, 2016 10.
Article in English | MEDLINE | ID: mdl-27548508

ABSTRACT

An active targeting drug delivery system that targets the nucleus could solve the problem of the treatment of genetic disorders through gene delivery, but it has met with limited success. The purpose of this study was to establish an RNA aptamer-modified nucleus-targeting liposomal carrier system referred to as NupApt-liposomes. RNA aptamers against the Nup358 protein are prepared using a newly established Protein SELEX method. After confirming aptamer binding to the recombinant protein, an aptamer-lipid conjugate (Apt-PEG-DSPE) was prepared. Aptamer-modified liposomes and simple polyethylene glycol (PEG) liposomes were prepared to check its ability to bind to isolated nuclei. Confocal studies indicated that the aptamer-modified liposomes had the ability to bind to isolated nuclei, whereas PEG-liposomes showed only weak binding. Confocal laser scanning microscopy studies of inhibition assays also supported the above conclusion. The dissociation constant of the Nucleoporin358-specific aptamer referred to as NupApt01 and NupApt02 were 36 and 70 nM, respectively. Finally, with aptamer-modified liposomes, gene expression studies showed a two times better gene expression in NupApt-liposome-treated nuclei in comparison to that of PEG-liposomes. This represents the first artificial RNA aptamer-modified liposomes promoting the specific binding of a nanocarrier to the nucleus, thus improving gene expression in comparison to PEG-liposomes.


Subject(s)
Cell Nucleus/metabolism , Drug Delivery Systems , Liposomes/metabolism , Molecular Chaperones/genetics , Nuclear Pore Complex Proteins/genetics , SELEX Aptamer Technique , Cell Nucleus/genetics , Gene Expression , Humans , Kinetics , Liposomes/chemical synthesis , Molecular Chaperones/metabolism , Nuclear Pore Complex Proteins/metabolism , Phosphatidylethanolamines/chemistry , Polyethylene Glycols/chemistry , Protein Binding
8.
Article in English | MEDLINE | ID: mdl-25295747

ABSTRACT

Carbonic anhydrases (CA) or carbonate dehydratases are a family of enzymes that catalyze the rapid interconversion of carbon dioxide and water to bicarbonate. CA I is the most abundant protein in the cytosol and has been reported to the partially associated with a number of fatal diseases. A newly established Systematic Evolution of Ligands by EXponential enrichment (SELEX) method referred to as Protein-SELEX was used to select RNA aptamers against the human erythrocyte CA I (CA I) protein. After five rounds of selection and counter selection the specific binding of the 6th cycle in vitro transcribed RNA library to CA I was detected by an Electrophoretic Mobility Shift Assay (EMSA). Three Specific sequences were identified as binding candidates after cloning and sequence analysis and one of the selected CA I specific RNA aptamers, CAapt1, was used to confirm specific binding and the Kd values were determined using an EMSA. The CAapt1 RNA aptamer showed no affinity towards any other protein and in comparison to the "0" cycle library, a significant enrichment was obtained. This methodology permitted us to successfully investigate the ssRNA aptamer CAapt1 for CA I protein.


Subject(s)
Aptamers, Nucleotide/chemistry , Carbonic Anhydrase I/chemistry , Base Sequence , Electrophoretic Mobility Shift Assay , Erythrocytes/chemistry , Humans , Ligands , SELEX Aptamer Technique
SELECTION OF CITATIONS
SEARCH DETAIL
...