Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Comput Biol ; 29(1): 27-44, 2022 01.
Article in English | MEDLINE | ID: mdl-35050715

ABSTRACT

We propose GRNUlar, a novel deep learning framework for supervised learning of gene regulatory networks (GRNs) from single-cell RNA-Sequencing (scRNA-Seq) data. Our framework incorporates two intertwined models. First, we leverage the expressive ability of neural networks to capture complex dependencies between transcription factors and the corresponding genes they regulate, by developing a multitask learning framework. Second, to capture sparsity of GRNs observed in the real world, we design an unrolled algorithm technique for our framework. Our deep architecture requires supervision for training, for which we repurpose existing synthetic data simulators that generate scRNA-Seq data guided by an underlying GRN. Experimental results demonstrate that GRNUlar outperforms state-of-the-art methods on both synthetic and real data sets. Our study also demonstrates the novel and successful use of expression data simulators for supervised learning of GRN inference.


Subject(s)
Deep Learning , Gene Regulatory Networks , Single-Cell Analysis/statistics & numerical data , Algorithms , Animals , Bias , Computational Biology , Computer Simulation , Databases, Nucleic Acid/statistics & numerical data , Escherichia coli/genetics , Humans , Mice , Neural Networks, Computer , RNA-Seq/statistics & numerical data , Saccharomyces cerevisiae/genetics , Supervised Machine Learning
2.
Bioinformatics ; 38(5): 1312-1319, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34888624

ABSTRACT

MOTIVATION: Reconstruction of genome-scale networks from gene expression data is an actively studied problem. A wide range of methods that differ between the types of interactions they uncover with varying trade-offs between sensitivity and specificity have been proposed. To leverage benefits of multiple such methods, ensemble network methods that combine predictions from resulting networks have been developed, promising results better than or as good as the individual networks. Perhaps owing to the difficulty in obtaining accurate training examples, these ensemble methods hitherto are unsupervised. RESULTS: In this article, we introduce EnGRaiN, the first supervised ensemble learning method to construct gene networks. The supervision for training is provided by small training datasets of true edge connections (positives) and edges known to be absent (negatives) among gene pairs. We demonstrate the effectiveness of EnGRaiN using simulated datasets as well as a curated collection of Arabidopsis thaliana datasets we created from microarray datasets available from public repositories. EnGRaiN shows better results not only in terms of receiver operating characteristic and PR characteristics for both real and simulated datasets compared with unsupervised methods for ensemble network construction, but also generates networks that can be mined for elucidating complex biological interactions. AVAILABILITY AND IMPLEMENTATION: EnGRaiN software and the datasets used in the study are publicly available at the github repository: https://github.com/AluruLab/EnGRaiN. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Arabidopsis , Gene Regulatory Networks , Software , Genome , Arabidopsis/genetics , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...