Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 133(4): 045002, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39121405

ABSTRACT

We show that multi-GeV laser wakefield electron accelerators in meter-scale, low density hydrodynamic plasma waveguides operate in a new nonlinear propagation regime dominated by sustained beating of lowest order modes of the ponderomotively modified channel; this occurs whether or not the injected pulse is linearly matched to the guide. For a continuously doped gas jet, this emergent mode beating effect leads to axially modulated enhancement of ionization injection and a multi-GeV energy spectrum of multiple quasimonoenergetic peaks; the same process in a locally doped jet produces single multi-GeV peaks with <10% energy spread. A three-stage model of drive laser pulse evolution and ionization injection characterizes the beating effect and explains our experimental results.

2.
Opt Express ; 30(7): 11360-11371, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35473082

ABSTRACT

Bessel beams generated with non-ideal axicons are affected by aberrations. We introduce a method to retrieve the complex amplitude of a Bessel beam from intensity measurements alone, and then use this information to correct the wavefront and intensity profile using a deformable mirror.

3.
Phys Rev Lett ; 125(7): 074801, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32857573

ABSTRACT

We demonstrate a new highly tunable technique for generating meter-scale low density plasma waveguides. Such guides can enable laser-driven electron acceleration to tens of GeV in a single stage. Plasma waveguides are imprinted in hydrogen gas by optical field ionization induced by two time-separated Bessel beam pulses: The first pulse, a J_{0} beam, generates the core of the waveguide, while the delayed second pulse, here a J_{8} or J_{16} beam, generates the waveguide cladding, enabling wide control of the guide's density, depth, and mode confinement. We demonstrate guiding of intense laser pulses over hundreds of Rayleigh lengths with on-axis plasma densities as low as N_{e0}∼5×10^{16} cm^{-3}.

4.
Phys Rev E ; 97(1-1): 011202, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29448396

ABSTRACT

We report measurements of the equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data.

SELECTION OF CITATIONS
SEARCH DETAIL