Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 39: 107609, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34901342

ABSTRACT

Here, we present quantitative subcellular compartment-specific proteomic data from wildtype and DYT-TOR1A heterozygous mouse embryonic fibroblasts (MEFs) basally and following thapsigargin (Tg) treatment [1]. In this experiment, we generated MEFs from wild type (WT) and a heterozygous DYT-TOR1A mouse model of dystonia. Subsequently, these MEF cultures were treated with either 1 µM Tg or dimethylsulfoxide vehicle (Veh) for six hours. Following treatment, the cells were fractionated into nuclear and cytosolic fractions. Liquid chromatography, tandem mass spectrometry (LC/MS/MS)-based proteomic profiling identified 65,056 unique peptides and 4801 unique proteins across all samples. The data presented here provide subcellular compartment-specific proteomic information within a dystonia model system both basally and under cellular stress. These data can inform future experiments focused on studying the function of TorsinA, the protein encoded by TOR1A, and its potential role in nucleocytoplasmic transport and proteostasis. In addition, the information in this article can also inform future mechanistic studies investigating the relationship between DYT-TOR1A dystonia and the cellular stress response to advance understanding of the pathogenesis of dystonia.

2.
Neurobiol Dis ; 158: 105464, 2021 10.
Article in English | MEDLINE | ID: mdl-34358617

ABSTRACT

TorsinA is a AAA+ ATPase that shuttles between the ER lumen and outer nuclear envelope in an ATP-dependent manner and is functionally implicated in nucleocytoplasmic transport. We hypothesized that the DYT-TOR1A dystonia disease-causing variant, ΔE TorsinA, may therefore disrupt the normal subcellular distribution of proteins between the nuclear and cytosolic compartments. To test this hypothesis, we performed proteomic analysis on nuclear and cytosolic subcellular fractions from DYT-TOR1A and wildtype mouse embryonic fibroblasts (MEFs). We further examined the compartmental proteomes following exposure to thapsigargin (Tg), an endoplasmic reticulum (ER) stressor, because DYT-TOR1A dystonia models have previously shown abnormalities in cellular stress responses. Across both subcellular compartments, proteomes of DYT-TOR1A cells showed basal state disruptions consistent with an activated stress response, and in response to thapsigargin, a blunted stress response. However, the DYT-TOR1A nuclear proteome under Tg cell stress showed the most pronounced and disproportionate degree of protein disruptions - 3-fold greater than all other conditions. The affected proteins extended beyond those typically associated with stress responses, including enrichments for processes critical for neuronal synaptic function. These findings highlight the advantage of subcellular proteomics to reveal events that localize to discrete subcellular compartments and refine thinking about the mechanisms and significance of cell stress in DYT-TOR1A pathogenesis.


Subject(s)
Cell Nucleus/pathology , Dystonia/genetics , Dystonia/pathology , Molecular Chaperones/genetics , Proteomics , Stress, Physiological , Animals , Cytosol/metabolism , Endoplasmic Reticulum Stress/drug effects , Gene Knock-In Techniques , Mice , Mice, Inbred C57BL , Subcellular Fractions , Thapsigargin/pharmacology
3.
G3 (Bethesda) ; 6(2): 485-94, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26646153

ABSTRACT

Sirtuins are evolutionarily conserved NAD-dependent deacetylases that catalyze the cleavage of NAD(+) into nicotinamide (NAM), which can act as a pan-sirtuin inhibitor in unicellular and multicellular organisms. Sirtuins regulate processes such as transcription, DNA damage repair, chromosome segregation, and longevity extension in yeast and metazoans. The founding member of the evolutionarily conserved sirtuin family, SIR2, was first identified in budding yeast. Subsequent studies led to the identification of four yeast SIR2 homologs HST1, HST2, HST3, and HST4. Understanding the downstream physiological consequences of inhibiting sirtuins can be challenging since most studies focus on single or double deletions of sirtuins, and mating defects in SIR2 deletions hamper genome-wide screens. This represents an important gap in our knowledge of how sirtuins function in highly complex biological processes such as aging, metabolism, and chromosome segregation. In this report, we used a genome-wide screen to explore sirtuin-dependent processes in Saccharomyces cerevisiae by identifying deletion mutants that are sensitive to NAM. We identified 55 genes in total, 36 of which have not been previously reported to be dependent on sirtuins. We find that genome stability pathways are particularly vulnerable to loss of sirtuin activity. Here, we provide evidence that defects in sister chromatid cohesion renders cells sensitive to growth in the presence of NAM. The results of our screen provide a broad view of the biological pathways sensitive to inhibition of sirtuins, and advance our understanding of the function of sirtuins and NAD(+) biology.


Subject(s)
Genome-Wide Association Study , Niacinamide/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Signal Transduction , Sirtuins/genetics , Sirtuins/metabolism , Biological Transport , DNA Repair , Gene Deletion , Gene Expression Regulation, Fungal , Gene Regulatory Networks , Genomic Instability , Mutation , Protein Transport , Reproducibility of Results , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...