Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 633: 1042-1053, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36516680

ABSTRACT

Because of its high theoretical capacity and energy density, the lithium-sulfur (Li-S) battery is a desirable next-generation energy storage technology. However, the shuttle effect of lithium polysulfide and the slow sulfur reaction kinetics remain significant barriers to Li-S battery application. In this work, tantalum trisulfide (TaS3) and selective manganese-doped tantalum trisulfide (Mn-TaS3) nanocomposites on reduced graphene oxide surface were developed via a one-step hydrothermal method for the first time and introduced as a novel multifunctional mediator in the Li-S battery. The surface engineering of Mn-TaS3@rGO with abundant defects not only exhibits the strong adsorption performance on lithium polysulfides (LiPSs) but also demonstrates the remarkable electrocatalytic effect on both the LiPSs conversion reaction in symmetric cell and the Li2S nucleation/dissolution processes in potentiostatic experiments, which would substantially promote the electrochemical performance of LSB. The cell assembled with Mn-TaS3@rGO/PP modified separator could significantly improve the cell conductivity and effectively accelerate the redox conversion of active sulfur during the charging/discharging process, which delivers exceptional long-term cycling with 683 mA h g-1 retention capacity after the 1000th cycle at 0.3C under the sulfur loading of 2.7 mg cm-2. Even at the E/S ratio as low as 5.0 µL mg-1, the reversible specific capacity of 692 mA h g-1 can be offered at 0.2C over 300 cycles. This research indicates that the novel Mn-TaS3@rGO multifunctional mediator is successfully fabricated and applied in Li-S batteries with extraordinary electrochemical performances and gives a strategy to explore the construction of a modified functional separator.

2.
J Colloid Interface Sci ; 609: 235-248, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34906909

ABSTRACT

The poor conductivity of sulfur, the lithium polysulfide's shuttle effect, and the lithium dendrite problem still impede the practical application of lithium-sulfur (Li-S) batteries. In this work, the ultrathin nickel-doped tungsten sulfide anchored on reduced graphene oxide (Ni-WS2@rGO) is developed as a new modified separator in the Li-S battery. The surface engineering of Ni-WS2@rGO could enhance the cell conductivity and afford abundant chemical anchoring sites for lithium polysulfides (LiPSs) adsorption, which is convinced by the high adsorption energy and the elongate SS bond given using density-functional theory (DFT) calculation. Concurrently, the Ni-WS2@rGO as a modified separator could effectively catalyze the conversion of LiPSs during the charging/discharging process. The Li-S cell with Ni-WS2@rGO modified separator achieves a high initial capacity of 1160.8 mA h g-1 at the current density of 0.2C with a high-sulfur-content cathode up to 80 wt%, and a retained capacity of 450.7 mA h g-1 over 500 cycles at 1C, showing an efficient preventing polysulfides shuttle to the anode while having no influence on Li+ ion transference across the decorating separator. The strategy adopted in this work would afford an effective pathway to construct an advanced functional separator for practical high-energy-density Li-S batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...