Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Model ; 29(10): 303, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37665380

ABSTRACT

CONTEXT: The irradiation of water solution of cytosine with UV light (λmax = 254 nm) shows oxo-hydroxy tautomerism with a rate constant of 6.297 × 10-3 min-1. The order of the reaction implies a tautomeric conversion. After removing the UV light source, we observed a dark reaction with a rate constant of 1.473 × 10-3 min-1 which leads to a restoration of the initial tautomer as before the irradiation. The mechanism of oxo-hydroxy tautomerism of cytosine in water solution was studied in the excited state. It was found that the transformations occur along the 1πσ* excited-state reaction paths which link the Franck-Condon geometries of the tautomers and the conical intersections S0/S1 connected with the H-detachment processes of the corresponding bonds. Furthermore, we established that the conical intersections S0/S1 are also mutually accessible along the 1πσ* excited-state reaction paths. METHODS: The ground-state equilibrium geometries were optimized at the B3LYP/aug-cc-pVDZ level of theory in water environment according to PCM as well as at the CC2/aug-cc-pVDZ level in the gas phase. The TD B3LYP and CC2 methods were applied for the study of the excited states. The tautomerization mechanisms were studied with the use of the linear interpolation in internal coordinates approach using the optimized geometries of tautomers minima and conical intersections S0/S1 at the CASSCF(6,6)/6-31G* level. All calculations were performed with the GAUSSIAN 16 commercial software.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 125: 384-90, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24566117

ABSTRACT

The solvent influence on the excited states, emission and absorption energies of the oxo for of barbituric acid was studied with experimental (UV and fluorescence spectra) and theoretical methods. The excited-state reaction paths of the out-pf-plane elongation of the N-H bond of the oxo form of barbituric acid were also investigated (TD DFT level) to the conical intersections mediating internal conversions to the ground state. The (1)nσ* excited state was found to be the driven electronic state. We found that the increase of the polarity of the solvent reduces the (1)nσ* excited state decay rate through a non-planar conical intersection and increases its energy. Thus, solvents with higher polarity disfavor the non-radiative decay through conical intersections.


Subject(s)
Barbiturates/chemistry , Models, Molecular , Solvents/chemistry , Crystallography, X-Ray , Electricity , Hydrogen Bonding , Molecular Conformation , Oxidation-Reduction , Thermodynamics
3.
J Mol Model ; 15(4): 411-9, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19066993

ABSTRACT

Twelve binary and eight ternary supersystems between thymine and methanol, and water were investigated in the ground state at the B3LYP and MP2 levels of theory using B3LYP/6-311 + + G(d,p) basis functions. The thermodynamics of complex formations and the mechanisms of intermolecular proton transfers were clarified in order to find out the most stable H-boned system. It was established that the energy barriers of the water/methanol-assisted proton transfers are several times lower than those of the intramolecular proton transfers in the DNA/RNA bases. The X-ray powder spectra of thymine, and this precrystallized from water and methanol showed that water molecules are incorporated in the crystal lattice of thymine forming H-bridges between thymine molecules.


Subject(s)
Methanol/chemistry , Models, Chemical , Protons , Thymine/chemistry , Water/chemistry , Crystallography, X-Ray
4.
J Mol Model ; 13(9): 1001-8, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17629753

ABSTRACT

Twelve H-bonded supersystems constructed between the adenine tautomers and methanol, ethanol, and i-propanol were studied at the B3LYP and MP2 levels of theory using 6-311G(d,p) and 6-311++G(d,p) basis functions. The thermodynamic parameters of the complex formations were calculated in order to estimate the exact stability of the supersystems. It was proven that the calculated energy barriers of the alcohol-assisted proton transfers are about 60% lower than those of the intramolecular proton transfers in adenine found earlier (Gu and Leszczynski in J Phys Chem A 103:2744-2750, 1999).


Subject(s)
2-Propanol/chemistry , Adenine/chemistry , Ethanol/chemistry , Methanol/chemistry , Protons , Computer Simulation , Hydrogen Bonding , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...