Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37629115

ABSTRACT

Respiratory syncytial virus (RSV) is known to cause annual epidemics of respiratory infections; however, the lack of specific treatment options for this disease poses a challenge. In light of this, there has been a concerted effort to identify small molecules that can effectively combat RSV. This article focuses on the mechanism of action of compound K142, which was identified as a primary screening leader in the earlier stages of the project. The research conducted demonstrates that K142 significantly reduces the intensity of virus penetration into the cells, as well as the formation of syncytia from infected cells. These findings show that the compound's interaction with the surface proteins of RSV is a key factor in its antiviral activity. Furthermore, pharmacological modeling supports that K142 effectively interacts with the F-protein. However, in vivo studies have shown only weak antiviral activity against RSV infection, with a slight decrease in viral load observed in lung tissues. As a result, there is a need to enhance the bioavailability or antiviral properties of this compound. Based on these findings, we hypothesize that further modifications of the compound under study could potentially increase its antiviral activity.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Humans , Respiratory Syncytial Virus Infections/drug therapy , Antiviral Agents/pharmacology , Biological Availability
2.
Viruses ; 15(6)2023 05 31.
Article in English | MEDLINE | ID: mdl-37376593

ABSTRACT

Hyperactivation of the immune system remains a dramatic, life-threatening complication of viral and bacterial infections, particularly during pneumonia. Therapeutic approaches to counteract local and systemic outbreaks of cytokine storm and to prevent tissue damage remain limited. Cyclin-dependent kinases 8 and 19 (CDK8/19) potentiate transcriptional responses to the altered microenvironment, but CDK8/19 potential in immunoregulation is not fully understood. In the present study, we investigated how a selective CDK8/19 inhibitor, Senexin B, impacts the immunogenic profiles of monocytic cells stimulated using influenza virus H1N1 or bacterial lipopolysaccharides. Senexin B was able to prevent the induction of gene expression of proinflammatory cytokines in THP1 and U937 cell lines and in human peripheral blood-derived mononuclear cells. Moreover, Senexin B substantially reduced functional manifestations of inflammation, including clustering and chemokine-dependent migration of THP1 monocytes and human pulmonary fibroblasts (HPF).


Subject(s)
Influenza A Virus, H1N1 Subtype , Monocytes , Humans , U937 Cells , Influenza A Virus, H1N1 Subtype/metabolism , Cytokines/metabolism , Leukocytes, Mononuclear/metabolism
3.
Molecules ; 28(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36985645

ABSTRACT

Respiratory syncytial virus (RSV) causes annual epidemics of respiratory infection. Usually harmless to adults, the RSV infection can be dangerous to children under 3 years of age and elderly people over 65 years of age, often causing serious problems, even death. At present, there are no vaccines and specific chemotherapeutic agents for the treatment of this disease, so the search for low-molecular weight compounds to combat RSV is a challenge. In this work, we have shown, for the first time, that monoterpene-substituted arylcoumarins are efficient RSV replication inhibitors at low micromolar concentrations. The most active compound has a selectivity index of about 200 and acts most effectively at the early stages of infection. The F protein of RSV is a potential target for these compounds, which is also confirmed by molecular docking and molecular dynamics simulation data.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Child , Humans , Child, Preschool , Aged , Molecular Docking Simulation , Antibodies, Viral , Viral Fusion Proteins , Respiratory Syncytial Virus Infections/drug therapy , Virus Replication
4.
Antiviral Res ; 209: 105508, 2023 01.
Article in English | MEDLINE | ID: mdl-36581049

ABSTRACT

Amphipathic nucleoside and non-nucleoside derivatives of pentacyclic aromatic hydrocarbon perylene are known as potent non-cytotoxic broad-spectrum antivirals. Here we report 3-methyl-5-(perylen-3-ylethynyl)-uracil-1-acetic acid and its amides, a new series of compounds based on a 5-(perylen-3-ylethynyl)-uracil scaffold. The compounds demonstrate pronounced in vitro activity against arthropod-borne viruses, namely tick-borne encephalitis virus (TBEV) and yellow fever virus (YFV), in plaque reduction assays with EC50 values below 1.9 and 1.3 nM, respectively, and Chikungunya virus (CHIKV) in cytopathic effect inhibition test with EC50 values below 3.2 µM. The compounds are active against respiratory viruses as well: severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in cytopathic effect inhibition test and influenza A virus (IAV) in virus titer reduction experiments are inhibited - EC50 values below 51 nM and 2.2 µM, respectively. The activity stems from the presence of a hydrophobic perylene core, and all of the synthesized compounds exhibit comparable 1O2 generation rates. Nonetheless, activity can vary by orders of magnitude depending on the hydrophilic part of the molecule, suggesting a complex mode of action. A time-of-addition experiment and fluorescent imaging indicate that the compounds inhibit viral fusion in a dose-dependent manner. The localization of the compound in the lipid bilayers and visible damage to the viral envelope suggest the membrane as the primary target. Dramatic reduction of antiviral activity with limited irradiation or under treatment with antioxidants further cements the idea of photoinduced ROS-mediated viral envelope damage being the mode of antiviral action.


Subject(s)
COVID-19 , Perylene , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Uracil/pharmacology , Perylene/pharmacology , SARS-CoV-2
5.
Nat Prod Res ; 37(12): 1954-1960, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35975755

ABSTRACT

A set of 12 abietane diterpene derivatives have been synthesised by the Ugi-four component reaction (Ugi-4CR) and tested for cytotoxicity and activity against influenza virus A/Puerto Rico/8/34 (H1N1) and SARS-CoV-2 pseudovirus. Five dipeptide derivatives demonstrated a selectivity index (SI) higher than 10 and IC50 values from 2 to 32 µM against influenza virus. Compound 11 was found to be a lead with SI of 200, and time-of-addition experiments showed the viral entry into the cell and the binding of the virus to the receptor as a possible target. Compound 7 was the only one showed weak anti-SARS-CoV-2 activity with EC50 value of 80.96 µM. Taken together, our data suggest the potency of diterpene acids-Ugi products as new effective anti-influenza compounds.


Subject(s)
COVID-19 , Diterpenes , Influenza A Virus, H1N1 Subtype , Humans , SARS-CoV-2 , Abietanes/pharmacology , Abietanes/chemistry
6.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36422520

ABSTRACT

Respiratory syncytial virus (RSV) causes acute respiratory infections, thus, posing a serious threat to the health of infants, children, and elderly people. In this study, we have discovered a series of potent RSV entry inhibitors with the (-)-borneol scaffold. The active compounds 3b, 5a, 5c, 7b, 9c, 10b, 10c, and 14b were found to exhibit activity against RSV A strain A2 in HEp-2 cells. The most active substances, 3b (IC50 = 8.9 µM, SI = 111) and 5a (IC50 = 5.0 µM, SI = 83), displayed more potency than the known antiviral agent Ribavirin (IC50 = 80.0 µM, SI = 50). Time-of-addition assay and temperature shift studies demonstrated that compounds 3b, 5a, and 6b inhibited RSV entry, probably by interacting with the viral F protein that mediated membrane fusion, while they neither bound to G protein nor inhibited RSV attachment to the target cells. Appling procedures of molecular modeling and molecular dynamics, the binding mode of compounds 3b and 5a was proposed. Taken together, the results of this study suggest (-)-borneol esters to be promising lead compounds for developing new anti-RSV agents.

7.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36297288

ABSTRACT

Perylene-based compounds are attracting significant attention due to their high broad-spectrum antiviral activity against enveloped viruses. Despite unambiguous results of in vitro studies and high selectivity index, the poor water solubility of these compounds prevented in vivo evaluation of their antiviral properties. In this work, we synthesized a series of compounds with a perylene pharmacophore bearing positively charged substituents to improve the aqueous solubility of this unique type of antivirals. Three types of charged groups were introduced: (1) quaternary morpholinium salts (3a-b); (2) a 2'-O-l-valinyl-uridine hydrochloride residue (8), and (3) a 3-methylbenzothiazolium cation (10). The synthesized compounds were evaluated based both on antiviral properties in vitro (CHIKV, SARS-CoV-2, and IAV) and on solubility in aqueous media. Compound 10 has the greatest aqueous solubility, making it preferable for pre-evaluation by intragastrical administration in a mouse model of lethal influenza pneumonia. The results indicate that the introduction of a positively charged group is a viable strategy for the design of drug candidates with a perylene scaffold for in vivo studies.

8.
Phytochem Lett ; 51: 91-96, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35935343

ABSTRACT

A chemical library was constructed based on the resin acids (abietic, dehydroabietic, and 12-formylabietic) and its diene adducts (maleopimaric and quinopimaric acid derivatives). The one-pot three-component CuCl-catalyzed aminomethylation of the abietane diterpenoid propargyl derivatives was carried out by formaldehyde and secondary amines (diethylamine, pyrrolidine, morpholine, and homopiperazine). All compounds were tested for cytotoxicity and antiviral activity against influenza virus A/Puerto Rico/8/34 (H1N1) in MDCK cells and SARS-CoV-2 pseudovirus in BHK-21-hACE2 cells. Among 21 tested compounds, six derivatives demonstrated a selectivity index (SI) higher than 10, and their IC50 values ranged from 0.19 to 5.0 µM. Moreover, two derivatives exhibited potent anti-SARS-CoV-2 infection activity. The antiviral activity and toxicity strongly depended on the nature of the diterpene core and heterocyclic substituent. Compounds 12 and 21 bearing pyrrolidine moieties demonstrated the highest virus-inhibiting activity with SIs of 128.6 and 146.8, respectively, and appeared to be most effective when added at the time points 0-10 and 1-10 h of the viral life cycle. Molecular docking and dynamics modeling were adopted to investigate the binding mode of compound 12 into the binding pocket of influenza A virus M2 protein. Compound 9 with a pyrrolidine group at C20 of 17-formylabietic acid was a promising anti-SARS-CoV-2 agent with an EC50 of 10.97 µM and a good SI value > 18.2. Collectively, our data suggested the potency of diterpenic Mannich bases as effective anti-influenza and anti-COVID-19 compounds.

9.
ChemMedChem ; 17(20): e202200382, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36031581

ABSTRACT

Nucleic acid-based detection of RNA viruses requires an annealing procedure to obtain RNA/probe or RNA/primer complexes for unwinding stable structures of folded viral RNA. In this study, we designed a protein-enzyme-free nano-construction, named four-armed DNA machine (4DNM), that requires neither an amplification stage nor a high-temperature annealing step for SARS-CoV-2 detection. It uses a binary deoxyribozyme (BiDz) sensor incorporated in a DNA nanostructure equipped with a total of four RNA-binding arms. Additional arms were found to improve the limit of detection at least 10-fold. The sensor distinguished SARS-CoV-2 from other respiratory viruses and correctly identified five positive and six negative clinical samples verified by quantitative polymerase chain reaction (RT-qPCR). The strategy reported here can be used for the detection of long natural RNA and can become a basis for a point-of-care or home diagnostic test.


Subject(s)
COVID-19 , DNA, Catalytic , Humans , SARS-CoV-2 , COVID-19/diagnosis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction
10.
Molecules ; 27(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35408661

ABSTRACT

Respiratory syncytial virus infection (RSVI) is an acute medical and social problem in many countries globally. Infection is most dangerous for infants under one year old and the elderly. Despite its epidemiological relevance, only two drugs are registered for clinical use against RSVI: ribavirin (approved in a limited number of countries due to side effects) and palivizumab (Synagis), which is intended only for the prevention, but not the treatment, of infection. Currently, various research groups are searching for new drugs against RSV, with three main areas of research: small molecules, polymeric drugs (proteins and peptides), and plant extracts. This review is devoted to currently developed protein and peptide anti-RSV drugs.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Tract Infections , Aged , Antiviral Agents/therapeutic use , Humans , Infant , Palivizumab/therapeutic use , Peptides/pharmacology , Peptides/therapeutic use , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Tract Infections/drug therapy
11.
Molecules ; 26(24)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34946573

ABSTRACT

Respiratory syncytial virus (RSV) is a critical cause of infant mortality. However, there are no vaccines and adequate drugs for its treatment. We showed, for the first time, that O-linked coumarin-monoterpene conjugates are effective RSV inhibitors. The most potent compounds are active against both RSV serotypes, A and B. According to the results of the time-of-addition experiment, the conjugates act at the early stages of virus cycle. Based on molecular modelling data, RSV F protein may be considered as a possible target.


Subject(s)
Antiviral Agents/pharmacology , Coumarins/pharmacology , Monoterpenes/pharmacology , Respiratory Syncytial Virus, Human/drug effects , Antiviral Agents/chemistry , Coumarins/chemistry , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Monoterpenes/chemistry , Virus Replication/drug effects
12.
Org Biomol Chem ; 19(45): 9925-9935, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34735561

ABSTRACT

Heteroanalogs of ascidian alkaloids have been synthesized, and for the first time 10 different types of saturated carbo- and heteroannulated pyridones have been obtained. A new method for the formation of decahydro[1,3]oxazolo[2,3-j]quinoline and octahydro-5H-cyclopenta[b][1,3]oxazolo[3,2-a]pyridine was proposed. The synthesis of these heterocycles is based on the three-component cyclization of trifluoroacetoacetic ester and cycloketones with 1,2- and 1,3-dinucleophiles. It was found that reactions with amino alcohols are distinguished by the possibility of isolating carbocyclopyridones of various degrees of saturation. The diastereomeric structure of the synthesized heterocycles has been studied, and the mechanism of their formation has been proposed. Antitumor, anti-influenza and analgesic agents have been found among the synthesized compounds.


Subject(s)
Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/chemical synthesis , Animals , Cyclization , Molecular Structure , Urochordata
13.
Arch Virol ; 166(7): 1965-1976, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33983502

ABSTRACT

A series of compounds containing a 1,7,7-trimethylbicyclo[2.2.1]heptane fragment were evaluated for their antiviral activity against influenza A virus strain A/Puerto Rico/8/34 (H1N1) in vitro. The most potent antiviral compound proved to be a quaternary ammonium salt based on (-)-borneol, 10a. In in vitro experiments, compound 10a inhibited influenza A viruses (H1, H1pdm09, and H3 subtypes), with an IC50 value of 2.4-16.8 µM (depending on the virus), and demonstrated low toxicity (CC50 = 1311 µM). Mechanism-of-action studies for compound 10a revealed it to be most effective when added at the early stages of the viral life cycle. In direct haemolysis inhibition tests, compound 10a was shown to decrease the membrane-disrupting activity of influenza A virus strain A/Puerto Rico/8/34. According to molecular modelling results, the lead compound 10a can bind to different sites in the stem region of the viral hemagglutinin.


Subject(s)
Alkanes/pharmacology , Ammonium Compounds/pharmacology , Camphanes/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Quaternary Ammonium Compounds/pharmacology , Salts/pharmacology , Animals , Antiviral Agents/pharmacology , Cell Line , Dogs , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H1N1 Subtype/metabolism , Madin Darby Canine Kidney Cells , Orthomyxoviridae Infections/drug therapy
14.
Eur J Med Chem ; 220: 113467, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-33894564

ABSTRACT

Emerging and re-emerging viruses periodically cause outbreaks and epidemics all over the world, eventually leading to global events such as the current pandemic of the novel SARS-CoV-2 coronavirus infection COVID-19. Therefore, an urgent need for novel antivirals is crystal clear. Here we present the synthesis and evaluation of an antiviral activity of phenoxazine-based nucleoside analogs divided into three groups: (1) 8-alkoxy-substituted, (2) acyclic, and (3) carbocyclic. The antiviral activity was assessed against a structurally and phylogenetically diverse panel of RNA and DNA viruses from 25 species. Four compounds (11a-c, 12c) inhibited 4 DNA/RNA viruses with EC50 ≤ 20 µM. Toxicity of the compounds for the cell lines used for virus cultivation was negligible in most cases. In addition, previously reported and newly synthesized phenoxazine derivatives were evaluated against SARS-CoV-2, and some of them showed promising inhibition of reproduction with EC50 values in low micromolar range, although accompanied by commensurate cytotoxicity.


Subject(s)
Antiviral Agents/pharmacology , DNA Viruses/drug effects , Nucleosides/pharmacology , Oxazines/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/toxicity , Cell Line, Tumor , Chlorocebus aethiops , Dogs , Humans , Madin Darby Canine Kidney Cells , Microbial Sensitivity Tests , Molecular Structure , Nucleosides/chemical synthesis , Nucleosides/toxicity , Oxazines/chemical synthesis , Oxazines/toxicity , Structure-Activity Relationship , Vero Cells , Virus Replication/drug effects
15.
Bioorg Med Chem Lett ; 29(23): 126745, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31668423

ABSTRACT

A chemical library was constructed based on the scaffold of camphecene (2-(E)-((1R,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene-aminoethanol). The modifications included introduction of mono-and bicyclic heterocyclic moieties in place of the terminal hydroxyl group of camphecene. All compounds were tested for cytotoxicity and anti-viral activity against influenza virus A/Puerto Rico/8/34 (H1N1) in MDCK cells. Among 15 tested compounds 11 demonstrated a selectivity index (SI) higher than 10 and IC50 values in the micromolar range. The antiviral activity and toxicity were shown to strongly depend on the nature of the heterocyclic substituent. Compounds 2 and 14 demonstrated the highest virus-inhibiting activity with SIs of 106 and 183, and bearing pyrrolidine and piperidine moieties, correspondingly. Compound 14 was shown to interfere with viral reproduction at early stages of the viral life cycle (0-2 h post-infection). Taken together, our data suggest potential of camphecene derivatives in particular and camphor-based imine derivatives in general as effective anti-influenza compounds.


Subject(s)
Camphor/analogs & derivatives , Ethanolamines/chemical synthesis , Influenza, Human/drug therapy , Camphor/chemical synthesis , Camphor/chemistry , Ethanolamines/chemistry , Humans , Structure-Activity Relationship
16.
Virology ; 524: 69-77, 2018 11.
Article in English | MEDLINE | ID: mdl-30165308

ABSTRACT

Due to the ability of influenza virus to develop drug resistance, the search for novel antivirals is an important goal of medical science and health care systems. We assessed the ability of the influenza virus to develop resistance to the hemagglutinin inhibitor camphecene and characterized laboratory-selected resistant strains. We showed by electron microscopy that camphecene decreases the number of virions fusing their envelopes with endosomal membranes. A 160-fold decrease in virus susceptibility was observed after six passages in cells. This was associated with the emergence of a V458L mutation in the HA2 subunit of HA and with a decrease in viral pathogenicity. Molecular modeling predicts that this substitution results in a more stable HA molecule compared to wild-type HA; and an altered camphecene-binding site. Therefore, despite the relatively rapid development of resistance, camphecene remains promising as a potential antiviral due to the low pathogenicity of resistant viruses that may arise.


Subject(s)
Antiviral Agents/pharmacology , Camphor/analogs & derivatives , Drug Resistance, Viral , Ethanolamines/pharmacology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A virus , Influenza, Human/virology , Amino Acid Substitution , Animals , Binding Sites , Camphor/pharmacology , Female , Humans , Influenza A virus/drug effects , Influenza A virus/genetics , Influenza A virus/pathogenicity , Influenza A virus/ultrastructure , Influenza, Human/drug therapy , Mice , Models, Molecular , Mutation , Virion , Virulence
17.
Bioorg Med Chem Lett ; 28(11): 2061-2067, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29716780

ABSTRACT

A set of (-)-isopulegol derived octahydro-2H-chromen-4-ols was synthesized and evaluated in vitro for antiviral activity against panel of reference influenza virus strains differing in subtype, origin (human or avian) and drug resistance. Compound (4R)-11a produced via one-pot synthesis by interaction between (-)-isopulegol and acetone was found to exhibit an outstanding activity against a number of H1N1 and H2N2 influenza virus strains with selectivity index more than 1500. (4R)-11a was shown to be most potent at early stages of viral cycle. Good correlation between anti-viral activity and calculated binding energy to hemagglutinin TBHQ active site was demonstrated.


Subject(s)
Antiviral Agents/pharmacology , Influenza A virus/drug effects , Influenza B virus/drug effects , Terpenes/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cyclohexane Monoterpenes , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Terpenes/chemical synthesis , Terpenes/chemistry
18.
Arch Virol ; 163(8): 2121-2131, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29633078

ABSTRACT

Viral respiratory infections are raising serious concern globally. Asian medicinal plants could be useful in improving the current treatment strategies for influenza. The present study examines the activity of five plants from Bangladesh against influenza virus. MDCK cells infected with influenza virus A/Puerto Rico/8/34 (H1N1) were treated with increasing concentrations of ethyl acetate extracts, and their cytotoxicity (CC50), virus-inhibiting activity (IC50), and selectivity index (SI) were calculated. The ethyl acetate extract of fruits of Embelia ribes Burm. f. (Myrsinaceae) had the highest antiviral activity, with an IC50 of 0.2 µg/mL and a SI of 32. Its major constituent, embelin, was further isolated and tested against the same virus. Embelin demonstrated antiviral activity, with an IC50 of 0.3 µM and an SI of 10. Time-of-addition experiments revealed that embelin was most effective when added at early stages of the viral life cycle (0-1 h postinfection). Embelin was further evaluated against a panel of influenza viruses including influenza A and B viruses that were susceptible or resistant to rimantadine and oseltamivir. Among the viruses tested, avian influenza virus A/mallard/Pennsylvania/10218/84 (H5N2) was the most susceptible to embelin (SI = 31), while A/Aichi/2/68 (H3N2) virus was the most resistant (SI = 5). In silico molecular docking showed that the binding site for embelin is located in the receptor-binding domain of the viral hemagglutinin. The results of this study provide evidence that E. ribes can be used for development of a novel alternative anti-influenza plant-based agent.


Subject(s)
Antiviral Agents/pharmacology , Embelia/chemistry , Influenza A virus/drug effects , Influenza B virus/drug effects , Influenza, Human/virology , Plant Extracts/pharmacology , Antiviral Agents/chemistry , Benzoquinones/chemistry , Benzoquinones/pharmacology , Humans , Influenza A virus/physiology , Influenza B virus/physiology , Plant Extracts/chemistry
19.
Bioorg Med Chem Lett ; 27(10): 2181-2184, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28366530

ABSTRACT

A series of seventeen tetrazole derivatives of 1,7,7-trimethyl-[2.2.1]bicycloheptane were synthesized using click chemistry methodology and characterized by spectral data. Studies of cytotoxicity and in vitro antiviral activity against influenza virus A/Puerto Rico/8/34 (H1N1) in MDCK cells of the compounds obtained were performed. The structure-activity relationship analysis suggests that to possess virus-inhibiting activity, the compounds of this group should bear oxygen atom with a short linker (C2-C4), either as a hydroxyl group (18, 19, 29), keto-group (21) or as a part of a heterocycle (24). These compounds demonstrated low cytotoxicity along with high anti-viral activity.


Subject(s)
Antiviral Agents/chemical synthesis , Camphor/analogs & derivatives , Ethanolamines/chemistry , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Camphor/chemical synthesis , Camphor/chemistry , Camphor/pharmacology , Click Chemistry , Dogs , Ethanolamines/chemical synthesis , Ethanolamines/pharmacology , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Madin Darby Canine Kidney Cells , Structure-Activity Relationship
20.
Eur J Med Chem ; 127: 661-670, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27823881

ABSTRACT

A series of camphor derived imines was synthesised and evaluated in vitro for antiviral activity. Theoretical evaluations of ADME properties were also carried out. Most of these compounds exhibited significant activity against the drug-resistant strains of influenza A virus. Especially, compounds 2 (SI = 632) and 3 (SI = 417) presented high inhibition against influenza subtypes A/Puerto Rico/8/34 and A/California/07/09 of H1N1pdm09. Analysis of the structure-activity relationship showed that the activity was strongly dependent on the length of the aliphatic chain: derivatives with a shorter chain possessed higher activity, while the suppressing action of compounds with long aliphatic chains was lower.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Camphor/chemistry , Camphor/pharmacology , Imines/chemistry , Influenza A Virus, H1N1 Subtype/drug effects , Antiviral Agents/metabolism , Camphor/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Protein Conformation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...