Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37299640

ABSTRACT

We present a study with a numerical model based on k→·p→, including electromechanical fields, to evaluate the electromechanical and optoelectronic properties of single GaAs quantum dots embedded in direct band gap AlGaAs nanowires. The geometry and the dimensions of the quantum dots, in particular the thickness, are obtained from experimental data measured by our group. We also present a comparison between the experimental and numerically calculated spectra to support the validity of our model.

2.
Nano Lett ; 23(3): 895-901, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36649590

ABSTRACT

Wurtzite AlGaAs is a technologically promising yet unexplored material. Here we study it both experimentally and numerically. We develop a complete numerical model based on an 8-band k→·p→ method, including electromechanical fields, and calculate the optoelectronic properties of wurtzite AlGaAs nanowires with different Al content. We then compare them with our experimental data. Our results strongly suggest that wurtzite AlGaAs is a direct band gap material. Moreover, we have also numerically obtained the band gap of wurtzite AlAs and the valence band offset between AlAs and GaAs in the wurtzite symmetry.

3.
Nanomaterials (Basel) ; 13(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36615968

ABSTRACT

Zinc oxide (ZnO) nanostructures are widely used in various fields of science and technology due to their properties and ease of fabrication. To achieve the desired characteristics for subsequent device application, it is necessary to develop growth methods allowing for control over the nanostructures' morphology and crystallinity governing their optical and electronic properties. In this work, we grow ZnO nanostructures via hydrothermal synthesis using surfactants that significantly affect the growth kinetics. Nanostructures with geometry from nanowires to hexapods are obtained and studied with photoluminescence (PL) spectroscopy. Analysis of the photoluminescence spectra demonstrates pronounced exciton on a neutral donor UV emission in all of the samples. Changing the growth medium chemical composition affects the emission characteristics sufficiently. Apart the UV emission, nanostructures synthesized without the surfactants demonstrate deep-level emission in the visible range with a peak near 620 nm. Structures synthesized with the use of sodium citrate exhibit emission peak near 520 nm, and those with polyethylenimine do not exhibit the deep-level emission. Thus, we demonstrate the correlation between the hydrothermal growth conditions and the obtained ZnO nanostructures' optical properties, opening up new possibilities for their precise control and application in nanophotonics, UV-Vis and white light sources.

4.
Nanomaterials (Basel) ; 10(11)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33114110

ABSTRACT

Controlled growth of heterostructured nanowires and mechanisms of their formation have been actively studied during the last decades due to perspectives of their implementation. Here, we report on the self-catalyzed growth of axially heterostructured GaPN/GaP nanowires on Si(111) by plasma-assisted molecular beam epitaxy. Nanowire composition and structural properties were examined by means of Raman microspectroscopy and transmission electron microscopy. To study the optical properties of the synthesized nanoheterostructures, the nanowire array was embedded into the silicone rubber membrane and further released from the growth substrate. The reported approach allows us to study the nanowire optical properties avoiding the response from the parasitically grown island layer. Photoluminescence and Raman studies reveal different nitrogen content in nanowires and parasitic island layer. The effect is discussed in terms of the difference in vapor solid and vapor liquid solid growth mechanisms. Photoluminescence studies at low temperature (5K) demonstrate the transition to the quasi-direct gap in the nanowires typical for diluted nitrides with low N-content. The bright room temperature photoluminescent response demonstrates the potential application of nanowire/polymer matrix in flexible optoelectronic devices.

5.
Nanomaterials (Basel) ; 10(3)2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32164178

ABSTRACT

The growth mechanisms of self-catalyzed InAs/InSb axial nanowire heterostructures are thoroughly investigated as a function of the In and Sb line pressures and growth time. Some interesting phenomena are observed and analyzed. In particular, the presence of In droplet on top of InSb segment is shown to be essential for forming axial heterostructures in the self-catalyzed vapor-liquid-solid mode. Axial versus radial growth rates of InSb segment are investigated under different growth conditions and described within a dedicated model containing no free parameters. It is shown that widening of InSb segment with respect to InAs stem is controlled by the vapor-solid growth on the nanowire sidewalls rather than by the droplet swelling. The In droplet can even shrink smaller than the nanowire facet under Sb-rich conditions. These results shed more light on the growth mechanisms of self-catalyzed heterostructures and give clear route for engineering the morphology of InAs/InSb axial nanowire heterostructures for different applications.

6.
Beilstein J Nanotechnol ; 9: 146-154, 2018.
Article in English | MEDLINE | ID: mdl-29441260

ABSTRACT

In this paper we study growth of quasi-one-dimensional GaN nanowires (NWs) and nanotube (NT)-like nanostructures on Si(111) substrates covered with a thin AlN layer grown by means of plasma-assisted molecular beam epitaxy. In the first part of our study we investigate the influence of the growth parameters on the geometrical properties of the GaN NW arrays. First, we find that the annealing procedure carried out prior to deposition of the AlN buffer affects the elongation rate and the surface density of the wires. It has been experimentally demonstrated that the NW elongation rate and the surface density drastically depend on the substrate growth temperature, where 800 °C corresponds to the maximum elongation rate of the NWs. In the second part of the study, we introduce a new dopant-stimulated method for GaN nanotube-like nanostructure synthesis using a high-intensity Si flux. Transmission electron microscopy was used to investigate the morphological features of the GaN nanostructures. The synthesized structures have a hexagonal cross-section and possess high crystal quality. We propose a theoretical model of the novel nanostructure formation which includes the role of the dopant Si. Some of the Si-doped samples were studied with the photoluminescence (PL) technique. The analysis of the PL spectra shows that the highest value of donor concentration in the nanostructures exceeds 5∙1019 cm-3.

SELECTION OF CITATIONS
SEARCH DETAIL
...