Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Type of study
Publication year range
1.
Inorg Chem ; 49(3): 823-32, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20030393

ABSTRACT

A new Ru(II) complex, [Ru(fpbpymH)(2)]Cl(2) (1), in which fpbpymH = [5-(trifluoromethyl)pyrazol-3-yl](2,2'-bipyrid-6-yl)methane, was prepared by the treatment of [Ru(DMSO)(4)Cl(2)] with 2 equiv of the terdentate chelate fpbpymH in refluxing ethanol. A single-crystal X-ray diffraction study of 1 revealed a distorted octahedral Ru(II) framework, showing strong N-H...Cl hydrogen bonding between the fpbpymH ligand and Cl anions. In the presence of Na(2)CO(3), the methylene linkers of chelates in 1 underwent stepwise oxygenation, forming the charge-neutral complexes [Ru(fpbpym)(fpbpyk)] (2) and [Ru(fpbpyk)(2)] (3) [fpbpykH = [5-(trifluoromethyl)pyrazol-3-yl](2,2'-bipyrid-6-yl) ketone] in sequence. The respective charge-neutral Os(II) complex [Os(fpbpyk)(2)] (4) was also isolated by the treatment of OsCl(3).3H(2)O with 2 equiv of the terdentate chelate fpbpymH. Electrochemical analysis indicated that the introduction of the electron-withdrawing ketone group in 2-4 increased the metal-based oxidation potential in sequence. For the photophysical properties, complexes 1-4 are essentially nonluminescent in solution (e.g., CH(2)Cl(2) or MeOH) at room temperature, but all exhibit 600-1100 nm phosphorescence with moderate intensity for the powdery, solid sample at room temperature. The trend in terms of the emission peak wavelength of 1 (666 nm) < 3 (795 nm) < 2 (810 nm) < 4 (994 nm) among titled complexes is in agreement with the corresponding onset of absorption spectra as well as the time-dependent density functional theory calculation of 1 < 3 < 2 < 4.


Subject(s)
Organometallic Compounds/chemistry , Osmium/chemistry , Ruthenium/chemistry , Crystallography, X-Ray , Electrochemistry , Hydrogen Bonding , Luminescent Measurements , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis , Spectrophotometry, Ultraviolet , Spectroscopy, Near-Infrared , Stereoisomerism
2.
Chem Asian J ; 4(5): 742-53, 2009 May 04.
Article in English | MEDLINE | ID: mdl-19294729

ABSTRACT

Rational design and synthesis of Ir(III) complexes (1-3) bearing two cyclometalated ligands (C--N) and one 2-(diphenylphosphino)phenolate chelate (P--O) as well as the corresponding Ir(III) derivatives (4-6) with only one (C--N) ligand and two P--O chelates are reported, where (C--NH)=phenylpyridine (ppyH), 1-phenylisoquinoline (piqH), and 4-phenylquinazoline (nazoH). Single crystal X-ray diffraction studies of 3 reveal a distorted octahedral coordination geometry, in which two nazo ligands adopt an eclipsed configuration, with the third P--O ligand located trans to the phenyl group of both nazo ligands, confirming the general skeletal pattern for 1-3. In sharp contrast, complex 4 reveals a trans-disposition for the PPh2 groups, along with the phenolate groups residing opposite the unique cyclometalated ppy ligand, which is the representative structure for 4-6. These Ir(III) complexes exhibit green-to-red photoluminescence with moderate to high quantum efficiencies in the degassed fluid state and bright emission in the solid state. For 1-6, the resolved emission spectroscopy and relaxation dynamics are well rationalized by the computational approach. OLEDs fabricated using 12 wt. % of 3 doped in CBP and with BCP as hole blocking material, give bright electroluminescence with lambda(max)=628 nm and CIE(xy) coordinates (0.65, 0.34). The turn-on voltage is 3.2 V, while the current efficiency and the power efficiency reach 11.2 cd A(-1) and 4.5 lm W(-1) at 20 mA cm(-2). The maximum efficiency reaches 14.7 cd A(-1)and 6.8 lm W(-1) upon switching to TPBI as hole blocking material. For evaluating device lifespan, the tested device incorporating CuPc as a passivation layer, 3 doped in CTP as an emitting layer, and BAlq as hole blocking material, shows a remarkably long lifetime up to 36,000 h at an initial luminance of 500 cd m(-2).

3.
Chem Asian J ; 3(12): 2112-23, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18767104

ABSTRACT

A series of Pt(II) complexes Pt(fpbpy)Cl (1), Pt(fpbpy)(OAc) (2), Pt(fpbpy)(NHCOMe) (3), Pt(fpbpy)(NHCOEt) (4), and [Pt(fpbpy)(NCMe)](BF(4)) (5) with deprotonated 6-(5-trifluoromethyl-pyrazol-3-yl)-2,2'-bipyridine terdentate ligand are prepared, among which 1 is converted to complexes 2-5 by a simple ligand substitution. Alternatively, acetamide complex 3 is prepared by hydrolysis of acetonitrile complex 5, while the back conversion from 3 to 1 is regulated by the addition of HCl solution, showing the reaction sequence 1-->5-->3-->1. Multilayer OLED devices are successfully fabricated by using triphenyl-(4-(9-phenyl-9H-fluoren-9-yl)phenyl) silane (TPSi-F) as host material and with doping concentrations of 1 varying from 7 to 100 %. The electroluminescence showed a substantial red-shifting versus the normal photoluminescence detected in solution. Moreover, at a doping concentration of 28 %, the device showed a saturated red luminescence with a maximum external quantum yield of 8.5 % at 20 mA cm(-2) and a peak luminescence of 47,543 cd m(-2) at 18.5 V.


Subject(s)
Chelating Agents/chemistry , Organoplatinum Compounds/chemistry , Platinum/chemistry , Pyridines/chemistry , Ligands , Luminescence , Molecular Structure , Spectrum Analysis
4.
Inorg Chem ; 47(8): 3307-17, 2008 Apr 21.
Article in English | MEDLINE | ID: mdl-18327896

ABSTRACT

Cyclometalated osmium complexes with the formulas [Os(ppy) 2(CO) 2] ( 1a, b), [Os(dfppy) 2(CO) 2] ( 2a, b), and [Os(btfppy) 2(CO) 2] ( 3a, b) have been synthesized, for which the chelating chromophores ppyH, dfppyH, and btfppyH denote 2-phenylpyridine, 2-(2,4-difluorophenyl)pyridine, and 2-(2,4-bis(trifluoromethyl)phenyl)pyridine, respectively. The isomers 1a- 3a, possessing an intrinsic C 2 rotational axis as determined by single-crystal X-ray diffraction analysis, underwent slow isomerization in solution at elevated temperature, giving the respective thermodynamic products 1b- 3b, which showed a distinctive coordination arrangement produced by a 180 degrees rotation of one cyclometalated ligand around the Os(II) metal center. In contrast to the case for 1a, b and 2a, which are inert to substitution, complexes 2b and 3b (or 3a) readily react with PPh 2Me to afford the products [Os(dfppy) 2(CO)(PPh 2Me)] ( 4) and [Os(btfppy) 2)(PPh 2Me)] ( 6), in which the incoming PPh 2Me replaced the CO located trans to the carbon atom of one cyclometalated ligand. UV-vis and emission spectra were measured, revealing the lowest excited state for all complexes as a nominally ligand-centered (3)pipi* state mixed with certain MLCT character. Introduction of the electron-withdrawing substituents on the cyclometalated chelates or replacement of one CO ligand with phosphine at the metal center increased the MLCT contribution in the first excited state, giving a broad and featureless emission with greatly enhanced quantum yields.

5.
Inorg Chem ; 46(24): 10276-86, 2007 Nov 26.
Article in English | MEDLINE | ID: mdl-17949085

ABSTRACT

We present the strategic design and synthesis of Os(II) complexes bearing a single pyridyl azolate pi-chromophore with an aim to attain high efficiency blue phosphorescence by way of localized transition. It turns out that our proposal of localized excitation seems to work well upon anchoring a single pi-chromophore on the Os(II) complexes such that the control of MLCT versus pipi* (or even LLCT) transitions is more straightforward. Among the titled complexes, [Os(CO)3(tfa)(fppz)] (1) and [Os(CO)3(tfa)(fbtz)] (5) (tfa=trifluoroacetate, (fppz)H=3-(trifluoromethyl)-5-(2-pyridyl)pyrazole, and (fbtz)H=3-(trifluoromethyl)-5-(4-tert-butyl-2-pyridyl)-1,2,4-triazole) give the anticipated blue phosphorescence with efficiencies of 0.26 (lambdamax=460 nm) and 0.27 (lambdamax=450 nm), respectively. For their halide analogues [Os(CO)3(X)(fppz)] (2, X=Cl; 3, X=Br; 4, X=I) and phosphine-substituted isomeric derivatives [Os(tfa)(fppz)(PPh2Me)2(CO)] (6-8), the localization of the excitation energy seems to populate at certain vibrational modes with weak bonding strength and hence an associated shallow potential energy surface to induce a facile radiationless transition. Furthermore, their ancillary ligands play an important role in fine-tuning not only the energy gap but also the emission intensity, i.e., in manifesting the radiationless transition pathways. Our results clearly show that there is always a tradeoff upon varying the parameters in an aim to optimize the hue and efficiency of phosphorescence toward blue.

6.
Dalton Trans ; (19): 1881-90, 2007 May 21.
Article in English | MEDLINE | ID: mdl-17702166

ABSTRACT

We report the preparation of a series of new heteroleptic Ir(III) metal complexes chelated by two cyclometalated 1-(2,4-difluorophenyl)pyrazole ligands (dfpz)H and a third ancillary bidentate ligand (L=X). Such an intricate design lies in a core concept that the cyclometalated dfpz ligands always warrant a greater pi pi* gap in these series of iridium complexes. Accordingly, the lowest one-electron excitation would accommodate the pi* orbital of the ancillary L=X ligands, the functionalization of which is then exploited to fine-tune the phosphorescent emission wavelengths. Amongst the L=X ligands designed, three classes (series 1-3) can be categorized, and remarkable bathochromic shifts of phosphorescence were observed by (i) replacing the 2-benzoxazol-2-yl substituent (1a) with the 2-benzothiazol-2-yl group (1b) in the phenolate complexes, (ii) converting the pyridyl group (2a) to the pyrazolyl group (2b) and even to the isoquinolyl group (2c) in the pyrazolate complexes and (iii) extending the pi-conjugation of the benzimidazolate ligand from 3a to 3b. Single-crystal X-ray diffraction study on complex [(dfpz)Ir(bzpz)] (2b) was conducted to confirm their general molecular architectures. Complex 2b was also used as a representative example for fabrication of multilayered, green-emitting phosphorescent OLEDs using the direct thermal evaporation technique.

8.
Org Lett ; 8(13): 2799-802, 2006 Jun 22.
Article in English | MEDLINE | ID: mdl-16774260

ABSTRACT

[reaction: see text] A series of carbazole/fluorene (CBZm-Fn) hybrids were effectively synthesized through Friedel-Crafts-type substitution of the carbazole rings. These compounds were thermally and morphologically stable host materials for OLED applications. Efficient blue phosphorescent OLEDs were obtained when employing CBZ1-F2 as the host and FIrpic as the guest.

9.
J Phys Chem B ; 109(50): 23827-35, 2005 Dec 22.
Article in English | MEDLINE | ID: mdl-16375368

ABSTRACT

We performed time-resolved spectral investigations of two distyrylcarbazole derivatives, 2,7- and 3,6-distyrylcarbazole (2,7-DPVTCz and 3,6-DPVTCz, respectively), in dilute toluene solution and in solid films mixed with poly(methyl methacrylate) (PMMA). The lifetime of 2,7-DPVTCz in its excited state in solution is approximately 100 times as great as that of 3,6-DPVTCz, consistent with their photophysical nature. The former shows intense emission, but the latter is nearly nonfluorescent in a free environment. Moreover, the lifetime of 3,6-DPVTCz in its excited state increased also approximately 100 times when the molecule was encapsulated in a 3,6-DPVTCz/PMMA solid film, indicating that intramolecular motion of the molecule significantly affects the observed relaxation dynamics in a confined environment. Calculations on the excited states indicate that an efficient intersystem crossing is activated upon twisting of the bridged C-C single bond in a free 3,6-linked carbazole; such efficient deactivation is impractical in 2,7-linked carbazole or for 3,6-linked carbazole in a PMMA matrix. Information obtained from experiments on femtosecond fluorescence enables us to distinguish crucial relaxation processes in the excited state for a profound understanding of the details of vibrational and electronic relaxations of 3,6-DPVTCz in solution.

10.
Inorg Chem ; 44(22): 7770-80, 2005 Oct 31.
Article in English | MEDLINE | ID: mdl-16241126

ABSTRACT

A series of heteroleptic Ir(III) metal complexes 1-3 bearing two N-phenyl-substituted pyrazoles and one 2-pyridyl pyrazole (or triazole) ligands were synthesized and characterized to attain highly efficient, room-temperature blue phosphorescence. The N-phenylpyrazole ligands, dfpzH = 1-(2,4-difluorophenyl)pyrazole, fpzH = 1-(4-fluorophenyl)pyrazole, dfmpzH = 1-(2,4-difluorophenyl)-3,5-dimethylpyrazole, and fmpzH = 1-(4-fluorophenyl)-3,5-dimethylpyrazole, show a similar reaction pattern with respect to the typical cyclometalated (C(wedge)N) chelate, which utilizes its ortho-substituted phenyl segment to link with the central Ir(III) atom, while the second 2-pyridylpyrazole (or triazole) ligand, namely, fppzH = 3-(trifluoromethyl)-5-(2-pyridyl)pyrazole, fptzH = 3-(trifluoromethyl)-5-(2-pyridyl)triazole, and hptzH = 3-(heptafluoropropyl)-5-(2-pyridyl)triazole, undergoes typical anionic (N--N) chelation to complete the octahedral framework. X-ray structural analyses on complexes [(dfpz)(2)Ir(fppz)] (1a) and [(fmpz)(2)Ir(hptz)] (3d) were established to confirm their molecular structures. Increases of the pipi energy gaps of the Ir(III) metal complexes were systematically achieved with two tuning strategies. One involves the substitution for one or two fluorine atoms at the N-phenyl segment or the introduction of two electron-releasing methyl substituents at the pyrazole segment of the H(C--N) ligands. Alternatively, we have applied the more electron-accepting triazolate in place of the pyrazolate segment for the third (N--N)H ligand. Our results, on the basis of steady-state, relaxation dynamics, and theoretical approaches, lead to a conclusion that, for complexes 1-3, the weakening of iridium metal-ligand bonding strength in the T(1) state plays a crucial role for the fast radiationless deactivation. For the case of [(fmpz)(2)Ir(hptz)] (3d), a thermal deactivation barrier of 4.8 kcal/mol was further deduced via temperature-dependent studies. The results provide a theoretical basis for future design and synthesis of the corresponding analogues suited to blue phosphorescent emitters.

11.
Chemistry ; 11(21): 6347-57, 2005 Oct 21.
Article in English | MEDLINE | ID: mdl-16086340

ABSTRACT

The rational design and syntheses of a new series of Os(II) complexes with formula [Os(fppz)(2)(CO)(L)] (1: L=4-dimethylaminopyridine; 2: L = pyridine; 3: L = 4,4'-bipyridine; 4: L = pyridazine; 5: L = 4-cyanopyridine), bearing two (2-pyridyl)pyrazolate ligands (fppz) together with one carbonyl and one N-heterocyclic ligand at the axial positions are reported. Single-crystal X-ray diffraction studies of, for example, 2 reveal a distorted octahedral geometry in which both fppz ligands reside in the equatorial plane with a trans configuration and adopt a bent arrangement at the metal center with a dihedral angle of approximately 23 degrees , while the carbonyl and pyridine ligands are located at the axial positions. Variation of the axial N-heterocyclic ligand leads to remarkable changes in the photophysical properties as the energy gap and hence the phosphorescence peak wavelength can be tuned. For complexes 1 and 2 the solvent-polarity-independent phosphorescence originates from a combination of intraligand (3)pi-pi* ((3)ILCT) and metal-to-ligand charge transfer transitions ((3)MLCT). In sharp contrast, as supported by cyclic voltammetry measurements and theoretical calculations, complexes 3--5 exhibit mainly ligand-to-ligand charge transfer (LLCT) transitions, resulting in a large dipolar change. The phosphorescence of complexes 3--5 thus exhibits a strong dependence on the polarity of the solvent, being shifted for example, from 560 (in C(6)H(12)) to 665 nm (in CH(3)CN) and from 603 (in C(6)H(12)) to 710 nm (in CH(3)CN) for complexes 3 and 5, respectively. The results clearly demonstrate that a simple, straightforward derivatization of the axial N-heterocyclic ligand drastically alters the excitation properties per se from intraligand charge transfer (ILCT) to LLCT transitions. The latter exhibit remarkable LLCT phosphorescence solvatochromism so that a broad range of color tunability can be achieved.

12.
Org Lett ; 7(17): 3717-20, 2005 Aug 18.
Article in English | MEDLINE | ID: mdl-16092858

ABSTRACT

Pure 2,2'-Dibromo-9,9'-spirobifluorene was synthesized by a method that did not involve troublesome dibromination of 9,9'-spirobifluorene or Sandmeyer reaction of 2,2'-diamino-9,9'-spirobifluorene. A series of donor-acceptor orthogonally substituted 9,9'-spirobifluorene was subsequently prepared showing rich variation of fluorescence in solution and in solid state. [reaction: see text]


Subject(s)
Fluorenes/chemical synthesis , Fluorescent Dyes/chemical synthesis , Hydrocarbons, Brominated/chemical synthesis , Spiro Compounds/chemical synthesis , Catalysis , Molecular Structure
13.
Inorg Chem ; 44(5): 1344-53, 2005 Mar 07.
Article in English | MEDLINE | ID: mdl-15732974

ABSTRACT

Rational design and syntheses of four iridium complexes (1-4) bearing two substituted quinoxalines and an additional 5-(2-pyridyl) pyrazolate or triazolate as the third coordinating ligand are reported. Single-crystal X-ray diffraction studies of 1 reveal a distorted octahedral geometry, in which two dpqx ligands adopt an eclipse configuration, for which the quinoxaline N atoms and the C atoms of orthometalated phenyl groups are located at the mutual trans- and cis-positions, respectively. The lowest absorption band for all complexes consists of a mixture of heavy-atom Ir(III)-enhanced 3MLCT and 3pipi* transitions, and the phosphorescent peak wavelength can be fine-tuned to cover the spectral range of 622-649 nm with high quantum efficiencies. The cyclic voltammetry was measured, showing a reversible, metal-centered oxidation with potentials at 0.76-1.03 V, as well as two reversible reduction waves with potentials ranging from -1.61 to -2.06 V, attributed to the sequential addition of two electrons to the more electron-accepting heterocyclic portion of two distinctive cyclometalated C/N ligands. Complex 1 was used as the representative example to fabricate the red-emitting PLEDs by blending it into a PVK-PBD polymer mixture. The devices exhibited the characteristic emission profile of 1 with peak maxima located at 640 nm. The maximum external quantum efficiency was 3.15% ph/el with a brightness of 1751 cd/m2 at a current density of 67.4 mA/cm2, and the maximum brightness of 7750 cd/m2 was achieved at the applied voltage of 21 V and with CIE coordinates of (0.64, 0.31).

14.
J Phys Chem B ; 109(29): 14000-5, 2005 Jul 28.
Article in English | MEDLINE | ID: mdl-16852757

ABSTRACT

We have systematically examined the photoluminescence (PL) and electroluminescence (EL) behavior of blends comprising two efficient red phosphors doped, respectively, into the blue-emitting polyfluorene derivatives PF-TPA-OXD and PF-OXD. The host polymers, which contain both hole- and electron-transporting or merely electron-transporting side chains, are capable of facilitating charge injection and transport. After determining the HOMO and LUMO energy levels of these materials, we were able to match the dopant with its most suitable host to achieve the direct formation and confinement of an exciton at the dopant. This configuration also leads to a reduction in the electrical excitation of the host polymer, which in turn decreases the degree of exciton loss arising from nonradiative decay of the host triplet. Using this approach, we were able to realize the production of high-performance red-electrophosphorescent devices. For Os(fppz)-doped devices, we obtain a balanced charge recombination in conjunction with higher current and luminance when using PF-TPA-OXD as the host matrix; this device reached a maximum external quantum efficiency of 8.37% with a peak brightness of 16 720 cd/m2. The absence of charge-transporting pendant units, i.e., the device fabricated from poly[9,9-dioctylfluorene-2,7-diyl] (POF), led, however, to relatively poor electroluminescence characteristics (5.81% and 2144 cd/m2).

SELECTION OF CITATIONS
SEARCH DETAIL
...