Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1240238, 2023.
Article in English | MEDLINE | ID: mdl-37692439

ABSTRACT

Introduction: Controlled-release fertilizers effectively improve crop yield and nitrogen use efficiency (NUE). However, their use increases the cost of crop production. Optimal management modes involving urea replacement with controlled-release N fertilizers to increase rice yield through enhanced NUE are not widely explored. Methods: Field experiments were conducted from 2017 to 2018 to determine the effects of different controlled-release N fertilizers combined with urea [urea-N (180 kg ha-1, N1)]. We used controlled-release N (150 kg ha-1, N2) as the base, and four controlled-release N and urea-N ratio treatments [(80%:0% (N3), 60%:20% (N4), 40%:40% (N5), or 20%:60% (N6) as the base with 20% urea-N as topdressing at the panicle initiation stage under 150 kg ha-1] to study their impact on the grain yield and NUE of machine-transplanted rice. Results and discussion: Grain yield and NUE were positively correlated with increases in photosynthetic production, flag leaf net photosynthetic rate (Pn), root activity, N transport, and grain-filling characteristics. The photosynthetic potential and population growth rate from the jointing to the full-heading stage, highly effective leaf area index (LAI) rate and Pn at the full-heading stage, root activity at 15 d after the full-heading stage, and N transport in the leaves from the full-heading to mature stage were significantly increased by the N4 treatment, thereby increasing both grain yield and NUE. Furthermore, compared with the other N treatments, the N4 treatment promoted the mean filling rate of inferior grains, which is closely related to increased filled grains per spikelet and filled grains rate. These effects ultimately improved the grain yield (5.03-25.75%), N agronomic efficiency (NAE, 3.96-17.58%), and N partial factor productivity (NPP, 3.98-27.13%) under the N4 treatment. Thus, the N4 treatment with controlled-release N (60%) and urea-N (20%) as a base and urea-N (20%) as topdressing at the panicle-initiation stage proved effective in improving the grain yield and NUE of machine-transplanted hybrid indica rice. These findings offer a theoretical and practical basis for enhancing rice grain yield, NUE, and saving the cost of fertilizer.

2.
Front Plant Sci ; 13: 903643, 2022.
Article in English | MEDLINE | ID: mdl-35712565

ABSTRACT

Estimating the aboveground biomass (AGB) of rice using remotely sensed data is critical for reflecting growth status, predicting grain yield, and indicating carbon stocks in agroecosystems. A combination of multisource remotely sensed data has great potential for providing complementary datasets, improving estimation accuracy, and strengthening precision agricultural insights. Here, we explored the potential to estimate rice AGB by using a combination of spectral vegetation indices and wavelet features (spectral parameters) derived from canopy spectral reflectance and texture features and texture indices (texture parameters) derived from unmanned aerial vehicle (UAV) RGB imagery. This study aimed to evaluate the performance of the combined spectral and texture parameters and improve rice AGB estimation. Correlation analysis was performed to select the potential variables to establish the linear and quadratic regression models. Multivariate analysis (multiple stepwise regression, MSR; partial least square, PLS) and machine learning (random forest, RF) were used to evaluate the estimation performance of spectral parameters, texture parameters, and their combination for rice AGB. The results showed that spectral parameters had better linear and quadratic relationships with AGB than texture parameters. For the multivariate analysis and machine learning algorithm, the MSR, PLS, and RF regression models fitted with spectral parameters (R2 values of 0.793, 0.795, and 0.808 for MSR, PLS, and RF, respectively) were more accurate than those fitted with texture parameters (R2 values of 0.540, 0.555, and 0.485 for MSR, PLS, and RF, respectively). The MSR, PLS, and RF regression models fitted with a combination of spectral and texture parameters (R2 values of 0.809, 0.810, and 0.805, respectively) slightly improved the estimation accuracy of AGB over the use of spectral parameters or texture parameters alone. Additionally, the bior1.3 of wavelet features at 947 nm and scale 2 was used to predict the grain yield and had good accuracy for the quadratic regression model. Therefore, the combined use of canopy spectral reflectance and texture information has great potential for improving the estimation accuracy of rice AGB, which is helpful for rice productivity prediction. Combining multisource remotely sensed data from the ground and UAV technology provides new solutions and ideas for rice biomass acquisition.

SELECTION OF CITATIONS
SEARCH DETAIL