Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
medRxiv ; 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38978648

ABSTRACT

Importance: Parkinson's disease (PD), the second most common neurodegenerative disease, is pathologically characterized by intraneuronal deposition of misfolded alpha-synuclein aggregates (αSyn D ). αSyn D seeding activities in CSF and skin samples have shown great promise in PD diagnosis, but they require invasive procedures. Sensitive and accurate αSyn D seed amplification assay (αSyn-SAA) for more accessible and minimally invasive samples (such as blood and saliva) are urgently needed for PD pathological diagnosis in routine clinical practice. Objective: To develop a sensitive and accurate αSyn-SAA biomarker using blood and saliva samples for sensitive, accurate and minimally invasive PD diagnosis. Design Setting and Participants: This prospective diagnostic study evaluates serum and saliva samples collected from patients clinically diagnosed with PD or healthy controls (HC) without PD at an academic Parkinson's and Movement Disorders Center from February 2020 to March 2024. Patients diagnosed with non-PD parkinsonism were excluded from this analysis. A total of 124 serum samples (82 PD and 42 HC) and 131 saliva samples (83 PD and 48 HC) were collected and examined by αSyn-SAA. Out of the 124 serum donors, a subset of 74 subjects (48 PD and 26 HC) also donated saliva samples during the same visits. PD patients with serum samples had a mean age of 69.21 years (range 44-88); HC subjects with serum samples had a mean age of 66.55 years (range 44-81); PD patients with saliva samples had a mean age of 69.58 years (range 49-87); HC subjects with saliva samples had a mean age of 64.71 years (range 30-81). Main Outcomes and Measures: Serum and/or saliva αSyn D seeding activities from PD and HC subjects were measured by αSyn-SAA using the Real-Time Quaking-Induced Conversion (RT-QuIC) platform. These PD patients had extensive clinical assessments including MDS-UPDRS. For a subset of PD and HC subjects whose serum and saliva samples were both collected during the same visits, the αSyn D seeding activities in both samples from the same subjects were examined, and the diagnostic accuracies for PD based on the seeding activities in either sample alone or both samples together were compared. Results: RT-QuIC analysis of αSyn D seeding activities in the 124 serum samples revealed a sensitivity of 80.49%, a specificity of 90.48%, and an accuracy of 0.9006 (AUC of ROC, 95% CI, 0.8472-0.9539, p <0.0001) for PD diagnosis. RT-QuIC analysis of αSyn D seeding activity in 131 saliva samples revealed a sensitivity of 74.70%, a specificity of 97.92%, and an accuracy of 0.8966 (AUC of ROC, 95% CI, 0.8454-0.9478, p <0.0001). When aSyn D seeding activities in the paired serum-saliva samples from the subset of 48 PD and 26 HC subjects were considered together, sensitivity was 95.83%, specificity was 96.15%, and the accuracy was 0.98 (AUC of ROC, 95% CI, 0.96-1.00, p <0.001), which are significantly better than when αSyn D seeding activities in either serum or saliva were used alone. For the paired serum-saliva samples, when specificity was set at 100% by elevating the αSyn-SAA cutoff values, a sensitivity of 91.7% and an accuracy of 0.9457 were still attained. Detailed correlation analysis revealed that αSyn D seeding activities in the serum of PD patients were correlated inversely with Montreal Cognitive Assessment (MoCA) score ( p =0.04), positively with Hamilton Depression Rating Scale (HAM-D) ( p =0.03), and weakly positively with PDQ-39 cognitive impairment score ( p =0.07). Subgroup analysis revealed that the inverse correlation with MoCA was only seen in males ( p =0.013) and weakly in the ≥70 age group ( p =0.07), and that the positive correlation with HAM-D was only seen in females ( p =0.04) and in the <70 age group ( p =0.01). In contrast, αSyn D seeding activities in the saliva of PD patients were inversely correlated with age at diagnosis ( p =0.02) and the REM sleep behavior disorder (RBD) status ( p =0.04), but subgroup analysis showed that the inverse correlation with age at diagnosis was only seen in males ( p =0.04) and in the <70 age group ( p =0.01). Conclusion and Relevance: Our data show that concurrent RT-QuIC assay of αSyn D seeding activities in both serum and saliva can achieve high diagnostic accuracies comparable to that of CSF αSyn-SAA, suggesting that αSyn D seeding activities in serum and saliva together can potentially be used as a valuable biomarker for highly sensitive, accurate, and minimally invasive diagnosis of PD in routine clinical practice. αSyn D seeding activities in serum and saliva of PD patients correlate differentially with some clinical characteristics and in an age and sex-dependent manner. KEY POINTS: Question: Are αSyn D seeding activities in serum and saliva together a more sensitive and accurate diagnostic PD biomarker than αSyn D seeding activities in either sample type alone? Are αSyn D seeding activities in either serum or saliva correlated with any clinical characteristics? Findings: Examinations of αSyn D seeding activities in 124 serum samples and 131 saliva samples from PD and heathy control subjects show that αSyn D seeding activities in both serum and saliva samples together can provide significantly more sensitive and accurate diagnosis of PD than either sample type alone. αSyn D seeding activities in serum or saliva exhibit varied inverse or positive correlations with some clinical features in an age and sex-dependent manner. Meaning: αSyn D seeding activities in serum and saliva together can potentially be used as a valuable pathological biomarker for highly sensitive, accurate, and minimally invasive PD diagnosis in routine clinical practice and clinical studies, and αSyn D seeding activities in serum or saliva correlate with some clinical characteristics in an age and sex-dependent manner, suggesting some possible clinical utility of quantitative serum/saliva αSyn-SAA data.

2.
Acta Neuropathol ; 147(1): 17, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38231266

ABSTRACT

Definitive diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) relies on the examination of brain tissues for the pathological prion protein (PrPSc). Our previous study revealed that PrPSc-seeding activity (PrPSc-SA) is detectable in skin of sCJD patients by an ultrasensitive PrPSc seed amplification assay (PrPSc-SAA) known as real-time quaking-induced conversion (RT-QuIC). A total of 875 skin samples were collected from 2 cohorts (1 and 2) at autopsy from 2-3 body areas of 339 cases with neuropathologically confirmed prion diseases and non-sCJD controls. The skin samples were analyzed for PrPSc-SA by RT-QuIC assay. The results were compared with demographic information, clinical manifestations, cerebrospinal fluid (CSF) PrPSc-SA, other laboratory tests, subtypes of prion diseases defined by the methionine (M) or valine (V) polymorphism at residue 129 of PrP, PrPSc types (#1 or #2), and gene mutations in deceased patients. RT-QuIC assays of the cohort #1 by two independent laboratories gave 87.3% or 91.3% sensitivity and 94.7% or 100% specificity, respectively. The cohort #2 showed sensitivity of 89.4% and specificity of 95.5%. RT-QuIC of CSF available from 212 cases gave 89.7% sensitivity and 94.1% specificity. The sensitivity of skin RT-QuIC was subtype dependent, being highest in sCJDVV1-2 subtype, followed by VV2, MV1-2, MV1, MV2, MM1, MM1-2, MM2, and VV1. The skin area next to the ear gave highest sensitivity, followed by lower back and apex of the head. Although no difference in brain PrPSc-SA was detected between the cases with false negative and true positive skin RT-QuIC results, the disease duration was significantly longer with the false negatives [12.0 ± 13.3 (months, SD) vs. 6.5 ± 6.4, p < 0.001]. Our study validates skin PrPSc-SA as a biomarker for the detection of prion diseases, which is influenced by the PrPSc types, PRNP 129 polymorphisms, dermatome sampled, and disease duration.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Prions , Humans , Prions/genetics , Prion Diseases/diagnosis , Prion Diseases/genetics , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/genetics , Biomarkers
3.
Br Poult Sci ; 63(5): 670-679, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35382668

ABSTRACT

1. The purpose of this study was to see how dietary supplementation with phenylpyruvate affected broiler growth, slaughter performance, gut health microbiota and immunity. This information can be used to develop alternative approaches to antibiotic replacement in modern poultry production and health.2. A total of 288, one-day-old broiler chickens were randomly assigned to one of four groups (six replicates each replicate has 12 chickens). A control basal diet (NC), basal diet plus antibiotic virginiamycin 15ppm (PC), basal diet plus phenylpyruvate 1 kg/t or 2 kg/t, respectively (LCP and HCP).3. Results showed that the birds in the PC group had higher ADFI during the first 21 d, and better FCR than the NC group. The HCP-fed group had a higher all-eviscerated ratio than the NC group and less abdominal fat than the birds fed LCP. The birds fed HCP had increased villus length and crypt depth in the ileum compared to the NC group.4. The bursa index was lower in the HCP group whereas the thymus index was lower in LCP and PC groups. In contrast, birds fed HCP has lower pro-inflammatory cytokine IL-1, as well as lower TLR4. Phenylpyruvate improved number in the Selenomonadaceae, genus Megamonas bacteroides spp., which are known for their beneficial effects on the maintenance of the cell surface structure, regulating aromatic amino acids and Clostridia jejuni-suppressive treatment respectively.5. It was concluded that phenylpyruvate can be utilised in feed to improve growth performance and positively modulate gut microbiota. However, this was less efficient than antibiotics in improving growth performance, although more efficient in improving productive performance and gut morphology. Moreover, a high dose of phenylpyruvate is more effective than a low dose.


Subject(s)
Chickens , Gastrointestinal Microbiome , Animals , Chickens/physiology , Animal Feed/analysis , Toll-Like Receptor 4 , Diet/veterinary , Virginiamycin , Anti-Bacterial Agents/pharmacology , Cytokines , Amino Acids, Aromatic , Interleukin-1 , Dietary Supplements/analysis
4.
Alzheimers Dement ; 18(6): 1248-1259, 2022 06.
Article in English | MEDLINE | ID: mdl-34569707

ABSTRACT

INTRODUCTION: Tumor necrosis factor (TNF) inhibitors are widely used to treat rheumatoid arthritis (RA) and their potential to retard Alzheimer's disease (AD) progression has been reported. However, their long-term effects on the dementia/AD risk remain unknown. METHODS: A propensity scored matched retrospective cohort study was conducted among 40,207 patients with RA within the US Veterans Affairs health-care system from 2000 to 2020. RESULTS: A total of 2510 patients with RA prescribed TNF inhibitors were 1:2 matched to control patients. TNF inhibitor use was associated with reduced dementia risk (hazard ratio [HR]: 0.64, 95% confidence interval [CI]: 0.52-0.80), which was consistent as the study period increased from 5 to 20 years after RA diagnosis. TNF inhibitor use also showed a long-term effect in reducing the risk of AD (HR: 0.57, 95% CI: 0.39-0.83) during the 20 years of follow-up. CONCLUSION: TNF inhibitor use is associated with lower long-term risk of dementia/AD among US veterans with RA.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Dementia , Veterans , Antirheumatic Agents/adverse effects , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/epidemiology , Dementia/chemically induced , Dementia/epidemiology , Dementia/prevention & control , Humans , Propensity Score , Retrospective Studies , Tumor Necrosis Factor Inhibitors
6.
NPJ Parkinsons Dis ; 7(1): 99, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34782640

ABSTRACT

Skin α-synuclein deposition is considered a potential biomarker for Parkinson's disease (PD). Real-time quaking-induced conversion (RT-QuIC) is a novel, ultrasensitive, and efficient seeding assay that enables the detection of minute amounts of α-synuclein aggregates. We aimed to determine the diagnostic accuracy, reliability, and reproducibility of α-synuclein RT-QuIC assay of skin biopsy for diagnosing PD and to explore its correlation with clinical markers of PD in a two-center inter-laboratory comparison study. Patients with clinically diagnosed PD (n = 34), as well as control subjects (n = 30), underwent skin punch biopsy at multiple sites (neck, lower back, thigh, and lower leg). The skin biopsy samples (198 in total) were divided in half to be analyzed by RT-QuIC assay in two independent laboratories. The α-synuclein RT-QuIC assay of multiple skin biopsies supported the clinical diagnosis of PD with a diagnostic accuracy of 88.9% and showed a high degree of inter-rater agreement between the two laboratories (92.2%). Higher α-synuclein seeding activity in RT-QuIC was shown in patients with longer disease duration and more advanced disease stage and correlated with the presence of REM sleep behavior disorder, cognitive impairment, and constipation. The α-synuclein RT-QuIC assay of minimally invasive skin punch biopsy is a reliable and reproducible biomarker for Parkinson's disease. Moreover, α-synuclein RT-QuIC seeding activity in the skin may serve as a potential indicator of progression as it correlates with the disease stage and certain non-motor symptoms.

7.
Alzheimers Res Ther ; 13(1): 177, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34670619

ABSTRACT

BACKGROUND: Interactions between the gut microbiota, microglia, and aging may modulate Alzheimer's disease (AD) pathogenesis but the precise nature of such interactions is not known. METHODS: We developed an integrated multi-dimensional, knowledge-driven, systems approach to identify interactions among microbial metabolites, microglia, and AD. Publicly available datasets were repurposed to create a multi-dimensional knowledge-driven pipeline consisting of an integrated network of microbial metabolite-gene-pathway-phenotype (MGPPN) consisting of 34,509 nodes (216 microbial metabolites, 22,982 genes, 1329 pathways, 9982 mouse phenotypes) and 1,032,942 edges. RESULTS: We evaluated the network-based ranking algorithm by showing that abnormal microglia function and physiology are significantly associated with AD pathology at both genetic and phenotypic levels: AD risk genes were ranked at the top 6.4% among 22,982 genes, P < 0.001. AD phenotypes were ranked at the top 11.5% among 9982 phenotypes, P < 0.001. A total of 8094 microglia-microbial metabolite-gene-pathway-phenotype-AD interactions were identified for top-ranked AD-associated microbial metabolites. Short-chain fatty acids (SCFAs) were ranked at the top among prioritized AD-associated microbial metabolites. Through data-driven analyses, we provided evidence that SCFAs are involved in microglia-mediated gut-microbiota-brain interactions in AD at both genetic, functional, and phenotypic levels. CONCLUSION: Our analysis produces a novel framework to offer insights into the mechanistic links between gut microbial metabolites, microglia, and AD, with the overall goal to facilitate disease mechanism understanding, therapeutic target identification, and designing confirmatory experimental studies.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Alzheimer Disease/genetics , Animals , Brain , Mice , Microglia , Phenotype
8.
Acta Neuropathol Commun ; 9(1): 62, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33827706

ABSTRACT

Definitive diagnosis of Parkinson's disease (PD) and dementia with Lewy bodies (DLB) relies on postmortem finding of disease-associated alpha-synuclein (αSynD) as misfolded protein aggregates in the central nervous system (CNS). The recent development of the real-time quaking induced conversion (RT-QuIC) assay for ultrasensitive detection of αSynD aggregates has revitalized the diagnostic values of clinically accessible biospecimens, including cerebrospinal fluid (CSF) and peripheral tissues. However, the current αSyn RT-QuIC assay platforms vary widely and are thus challenging to implement and standardize the measurements of αSynD across a wide range of biospecimens and in different laboratories. We have streamlined αSyn RT-QuIC assay based on a second generation assay platform that was assembled entirely with commercial reagents. The streamlined RT-QuIC method consisted of a simplified protocol requiring minimal hands-on time, and allowing for a uniform analysis of αSynD in different types of biospecimens from PD and DLB. Ultrasensitive and specific RT-QuIC detection of αSynD aggregates was achieved in million-fold diluted brain homogenates and in nanoliters of CSF from PD and DLB cases but not from controls. Comparative analysis revealed higher seeding activity of αSynD in DLB than PD in both brain homogenates and CSF. Our assay was further validated with CSF samples of 214 neuropathologically confirmed cases from tissue repositories (88 PD, 58 DLB, and 68 controls), yielding a sensitivity of 98% and a specificity of 100%. Finally, a single RT-QuIC assay protocol was employed uniformly to detect seeding activity of αSynD in PD samples across different types of tissues including the brain, skin, salivary gland, and colon. We anticipate that our streamlined protocol will enable interested laboratories to easily and rapidly implement the αSyn RT-QuIC assay for various clinical specimens from PD and DLB. The utilization of commercial products for all assay components will improve the robustness and standardization of the RT-QuIC assay for diagnostic applications across different sites. Due to ultralow sample consumption, the ultrasensitive RT-QuIC assay will facilitate efficient use and sharing of scarce resources of biospecimens. Our streamlined RT-QuIC assay is suitable to track the distribution of αSynD in CNS and peripheral tissues of affected patients. The ongoing evaluation of RT-QuIC assay of αSynD as a potential biomarker for PD and DLB in clinically accessible biospecimens has broad implications for understanding disease pathogenesis, improving early and differential diagnosis, and monitoring therapeutic efficacies in clinical trials.


Subject(s)
High-Throughput Screening Assays/methods , Lewy Body Disease/diagnosis , Parkinson Disease/diagnosis , alpha-Synuclein/analysis , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Sensitivity and Specificity
9.
JAMA Neurol ; 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32986090

ABSTRACT

IMPORTANCE: Deposition of the pathological α-synuclein (αSynP) in the brain is the hallmark of synucleinopathies, including Parkinson disease (PD), Lewy body dementia (LBD), and multiple system atrophy (MSA). Whether real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA) assays can sensitively detect skin biomarkers for PD and non-PD synucleinopathies remains unknown. OBJECTIVE: To develop sensitive and specific skin biomarkers for antemortem diagnosis of PD and other synucleinopathies. DESIGN, SETTING, AND PARTICIPANTS: This retrospective and prospective diagnostic study evaluated autopsy and biopsy skin samples from neuropathologically and clinically diagnosed patients with PD and controls without PD. Autopsy skin samples were obtained at 3 medical centers from August 2016 to September 2019, and biopsy samples were collected from 3 institutions from August 2018 to November 2019. Based on neuropathological and clinical diagnoses, 57 cadavers with synucleinopathies and 73 cadavers with nonsynucleinopathies as well as 20 living patients with PD and 21 living controls without PD were included. Specifically, cadavers and participants had PD, LBD, MSA, Alzheimer disease, progressive supranuclear palsy, or corticobasal degeneration or were nonneurodegenerative controls (NNCs). A total of 8 approached biopsy participants either refused to participate in or were excluded from this study due to uncertain clinical diagnosis. Data were analyzed from September 2019 to April 2020. MAIN OUTCOMES AND MEASURES: Skin αSynP seeding activity was analyzed by RT-QuIC and PMCA assays. RESULTS: A total of 160 autopsied skin specimens from 140 cadavers (85 male cadavers [60.7%]; mean [SD] age at death, 76.8 [10.1] years) and 41 antemortem skin biopsies (27 male participants [66%]; mean [SD] age at time of biopsy, 65.3 [9.2] years) were analyzed. RT-QuIC analysis of αSynP seeding activity in autopsy abdominal skin samples from 47 PD cadavers and 43 NNCs revealed 94% sensitivity (95% CI, 85-99) and 98% specificity (95% CI, 89-100). As groups, RT-QuIC also yielded 93% sensitivity (95% CI, 85-97) and 93% specificity (95% CI, 83-97) among 57 cadavers with synucleinopathies (PD, LBD, and MSA) and 73 cadavers without synucleinopathies (Alzheimer disease, progressive supranuclear palsy, corticobasal degeneration, and NNCs). PMCA showed 82% sensitivity (95% CI, 76-88) and 96% specificity (95% CI, 85-100) with autopsy abdominal skin samples from PD cadavers. From posterior cervical and leg skin biopsy tissues from patients with PD and controls without PD, the sensitivity and specificity were 95% (95% CI, 77-100) and 100% (95% CI, 84-100), respectively, for RT-QuIC and 80% (95% CI, 49-96) and 90% (95% CI, 60-100) for PMCA. CONCLUSIONS AND RELEVANCE: This study provides proof-of-concept that skin αSynP seeding activity may serve as a novel biomarker for antemortem diagnoses of PD and other synucleinopathies.

10.
Cell Res ; 29(4): 313-329, 2019 04.
Article in English | MEDLINE | ID: mdl-30858560

ABSTRACT

Missense mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) cause the majority of familial and some sporadic forms of Parkinson's disease (PD). The hyperactivity of LRRK2 kinase induced by the pathogenic mutations underlies neurotoxicity, promoting the development of LRRK2 kinase inhibitors as therapeutics. Many potent and specific small-molecule LRRK2 inhibitors have been reported with promise. However, nearly all inhibitors are ATP competitive-some with unwanted side effects and unclear clinical outcome-alternative types of LRRK2 inhibitors are lacking. Herein we identify 5'-deoxyadenosylcobalamin (AdoCbl), a physiological form of the essential micronutrient vitamin B12 as a mixed-type allosteric inhibitor of LRRK2 kinase activity. Multiple assays show that AdoCbl directly binds LRRK2, leading to the alterations of protein conformation and ATP binding in LRRK2. STD-NMR analysis of a LRRK2 homologous kinase reveals the contact sites in AdoCbl that interface with the kinase domain. Furthermore, we provide evidence that AdoCbl modulates LRRK2 activity through disrupting LRRK2 dimerization. Treatment with AdoCbl inhibits LRRK2 kinase activity in cultured cells and brain tissue, and prevents neurotoxicity in cultured primary rodent neurons as well as in transgenic C. elegans and D. melanogaster expressing LRRK2 disease variants. Finally, AdoCbl alleviates deficits in dopamine release sustainability caused by LRRK2 disease variants in mouse models. Our study uncovers vitamin B12 as a novel class of LRRK2 kinase modulator with a distinct mechanism, which can be harnessed to develop new LRRK2-based PD therapeutics in the future.


Subject(s)
Cobamides/pharmacology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Vitamin B 12/analogs & derivatives , Vitamin B Complex/pharmacology , Allosteric Regulation , Animals , Caenorhabditis elegans , Disease Models, Animal , Drosophila melanogaster , Drug Repositioning , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Rats
11.
Opt Express ; 26(7): 8040-8048, 2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29715777

ABSTRACT

Generally, it is difficult for the common backward wave oscillator (BWO) to produce powerful THz radiation when the operating frequency increases to a high level such as over 1 THz due to the very small structural dimensions. The concept of generating powerful THz radiation from the interaction between high-order mode THz wave and multiple sheet electron beams is a promising solution to address the issue. For the high-order mode operation, a novel orthogonal grating waveguide is proposed, which is relatively ease of fabrication compared with the overmoded structure based on the double staggered grating waveguide. A high-order mode BWO based on the orthogonal grating waveguide and multiple sheet electron beams is studied by simulations. Particle-in-cell simulations show that the BWO can provide over 1.08 W power in the frequency range of 1.18-1.30 THz. Such a methodology opens up a new way to extend the BWO's operating frequency to a higher level and provides a potential solution for developing compact powerful THz radiation sources with wide tunable bandwidth.

12.
J Neurol Sci ; 388: 203-207, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29627023

ABSTRACT

INTRODUCTION: LRRK2 G2019S mutation carriers with Parkinson's disease (PD) have been generally indistinguishable from those with idiopathic PD, with the exception of variable differences in some motor and non-motor domains, including cognition, gait, and balance. LRRK2 G2019S is amongst the most common genetic etiologies for PD, particularly in Ashkenazi Jewish (AJ) populations. METHODS: This cross-sectional data collection study sought to clarify the phenotype of LRRK2 G2019S mutation carriers with PD. Primary endpoints were the Movement Disorder Society Unified Parkinson Disease Rating Scale (MDS-UPDRS) and Montreal Cognitive Assessment (MoCA). Other motor and non-motor data were also assessed. The Mann-Whitney U Test was utilized to compare LRRK2 G2019S carriers with PD (LRRK2+) with non-carrier PD controls who were matched for age, gender, education, and PD duration. Survival analyses and log rank tests were utilized to compare interval from onset of PD to development of motor and non-motor complications. RESULTS: We screened 251 subjects and 231 completed the study, of whom 9 were LRRK2+, including 7 AJ subjects. 22.73% of AJ subjects with a family history of PD (FH) and 12.96% of AJ subjects without a FH were LRRK2+. There were no significant differences between the 9 LRRK2+ subjects and 19 matched PD controls in MDS-UPDRS, MoCA, or other motor and non-motor endpoints. CONCLUSION: Prevalence of the LRRK2 G2019S mutation in AJ and non-AJ subjects in our study population in Cleveland, Ohio was comparable to other clinical studies. There were no significant motor or non-motor differences between LRRK2+ PD and matched PD controls.


Subject(s)
Genetic Predisposition to Disease , Heterozygote , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutation , Parkinson Disease/genetics , Aged , Cross-Sectional Studies , Female , Humans , Jews/genetics , Male , Parkinson Disease/epidemiology , Parkinson Disease/physiopathology , Phenotype , Pilot Projects , Prevalence
13.
J Alzheimers Dis ; 63(1): 157-165, 2018.
Article in English | MEDLINE | ID: mdl-29562525

ABSTRACT

Alzheimer's disease (AD) is the leading cause of dementia in the elderly, characterized by neurofibrillary tangles (NFTs), senile plaques (SPs), and a progressive loss of neuronal cells in selective brain regions. Rab10, a small Rab GTPase involved in vesicular trafficking, has recently been identified as a novel protein associated with AD. Interestingly, Rab10 is a key substrate of leucine-rich repeat kinase 2 (LRRK2), a serine/threonine protein kinase genetically associated with the second most common neurodegenerative disease Parkinson's disease. However, the phosphorylation state of Rab10 has not yet been investigated in AD. Here, using a specific antibody recognizing LRRK2-mediated Rab10 phosphorylation at the amino acid residue threonine 73 (pRab10-T73), we performed immunocytochemical analysis of pRab10-T73 in hippocampal tissues of patients with AD. pRab10-T73 was prominent in NFTs in neurons within the hippocampus in all cases of AD examined, whereas immunoreactivity was very faint in control cases. Other characteristic AD pathological structures including granulovacuolar degeneration, dystrophic neurites and neuropil threads also contained pRab10-T73. The pRab10-T73 immunoreactivity was diminished greatly following dephosphorylation with alkaline phosphatase. pRab10-T73 was further found to be highly co-localized with hyperphosphorylated tau (pTau) in AD, and demonstrated similar pathological patterns as pTau in Down syndrome and progressive supranuclear palsy. Although pRab10-T73 immunoreactivity could be noted in dystrophic neurites surrounding SPs, SPs were largely negative for pRab10-T73. These findings indicate that Rab10 phosphorylation could be responsible for aberrations in the vesicle trafficking observed in AD leading to neurodegeneration.


Subject(s)
Alzheimer Disease/pathology , Brain/metabolism , Brain/pathology , rab GTP-Binding Proteins/metabolism , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Neurofibrillary Tangles/pathology , Phosphorylation , Plaque, Amyloid/pathology , Threonine/metabolism
14.
Ann R Coll Surg Engl ; 100(3): e46-e48, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29484926

ABSTRACT

We report a case of giant gastrointestinal stromal tumour of the stomach in a 71-year-old woman, with emphasis on its going through surgical resection. The physical examination and radiological findings revealed that a giant mass occupied most of the abdominal cavity. The patient underwent an en-block resection of the mass, partial resection of the distal stomach and Billroth II gastrojejunostomy. The pathological diagnosis was gastrointestinal stromal tumour. The patient had a long-term disease-free survival. We emphasise that complete surgical resection is the only effective radical treatment approach for giant gastrointestinal stroma of the stomach. In some cases, we still have the opportunity for resection of these tumours because of their expansive growth, even though the lesions are very large.


Subject(s)
Gastrectomy/methods , Gastrointestinal Stromal Tumors/surgery , Stomach Neoplasms/surgery , Aged , Female , Gastrointestinal Stromal Tumors/diagnosis , Gastrointestinal Stromal Tumors/pathology , Humans , Stomach Neoplasms/diagnosis , Stomach Neoplasms/pathology , Tumor Burden
15.
J Chem Phys ; 147(21): 214309, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29221395

ABSTRACT

We observe vibronic transitions in CaD+ between the 11Σ and 21Σ electronic states by resonance enhanced multiphoton photodissociation spectroscopy in a Coulomb crystal. The vibronic transitions are compared with previous measurements on CaH+. The result is a revised assignment of the CaH+ vibronic levels and a disagreement with multi-state-complete-active-space second-order perturbation theory theoretical calculations by approximately 700 cm-1. Updated high-level coupled-cluster calculations that include core-valence correlations reduce the disagreement between theory and experiment to 300 cm-1.

16.
J Phys Condens Matter ; 29(14): 145801, 2017 Apr 12.
Article in English | MEDLINE | ID: mdl-28248641

ABSTRACT

Using magnetization, dielectric constant, and neutron diffraction measurements on a high quality single crystal of YBaCuFeO5 (YBCFO), we demonstrate that the crystal shows two antiferromagnetic transitions at [Formula: see text] K and [Formula: see text] K, and displays a giant dielectric constant with a characteristic of the dielectric relaxation at T N2. It does not show the evidence of the electric polarization for the crystal used for this study. The transition at T N1 corresponds with a paramagnetic to antiferromagnetic transition with a magnetic propagation vector doubling the unit cell along three crystallographic axes. Upon cooling, at T N2, the commensurate spin ordering transforms to a spiral magnetic structure with a propagation vector of ([Formula: see text] [Formula: see text] [Formula: see text]), where [Formula: see text], [Formula: see text], and [Formula: see text] are odd, and the incommensurability δ is temperature dependent. Around the transition boundary at T N2, both commensurate and incommensurate spin ordering coexist.

17.
Sci Rep ; 7: 38280, 2017 01 16.
Article in English | MEDLINE | ID: mdl-28091514

ABSTRACT

In most human sporadic prion diseases the phenotype is consistently associated with specific pairings of the genotype at codon 129 of the prion protein gene and conformational properties of the scrapie PrP (PrPSc) grossly identified types 1 and 2. This association suggests that the 129 genotype favours the selection of a distinct strain that in turn determines the phenotype. However, this mechanism cannot play a role in the phenotype determination of sporadic fatal insomnia (sFI) and a subtype of sporadic Creutzfeldt-Jakob disease (sCJD) identified as sCJDMM2, which share 129 MM genotype and PrPSc type 2 but are associated with quite distinct phenotypes. Our detailed comparative study of the PrPSc conformers has revealed major differences between the two diseases, which preferentially involve the PrPSc component that is sensitive to digestion with proteases (senPrPSc) and to a lesser extent the resistant component (resPrPSc). We conclude that these variations are consistent with two distinct strains in sFI and sCJDMM2, and that the rarer sFI is the result of a variant strain selection pathway that might be favoured by a different brain site of initial PrPSc formation in the two diseases.


Subject(s)
Prion Diseases/classification , Prion Proteins/genetics , Prions/classification , Creutzfeldt-Jakob Syndrome/genetics , Creutzfeldt-Jakob Syndrome/metabolism , Genotype , Glycosylation , Humans , Insomnia, Fatal Familial/genetics , Insomnia, Fatal Familial/metabolism , Phenotype , PrPSc Proteins/genetics , PrPSc Proteins/metabolism , Prion Diseases/genetics , Prion Proteins/metabolism , Prions/genetics
18.
Sci Rep ; 6: 36970, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27845377

ABSTRACT

Thermal transport of quantum magnets has elucidated the nature of low energy elementary excitations and complex interplay between those excited states via strong scattering of thermal carriers. BiCu2PO6 is a unique frustrated spin-ladder compound exhibiting highly anisotropic spin excitations that contain both itinerant and localized dispersion characters along the b- and a-axes respectively. Here, we investigate thermal conductivity κ of BiCu2PO6 under high magnetic fields (H) of up to 30 tesla. A dip-feature in κ, located at ~15 K at zero-H along all crystallographic directions, moves gradually toward lower temperature (T) with increasing H, thus resulting in giant suppression by a factor of ~30 near the critical magnetic field of Hc ≅ 23.5 tesla. The giant H- and T-dependent suppression of κ can be explained by the combined result of resonant scattering of phononic heat carriers with magnetic energy levels and increased phonon scattering due to enhanced spin fluctuation at Hc, unequivocally revealing the existence of strong spin-phonon coupling. Moreover, we find an experimental indication that the remaining magnetic heat transport along the b-axis becomes almost gapless at the magnetic quantum critical point realized at Hc.

19.
Sci Rep ; 6: 34477, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27708338

ABSTRACT

Misfolded alpha-synuclein (AS) and other neurodegenerative disorder proteins display prion-like transmission of protein aggregation. Factors responsible for the initiation of AS aggregation are unknown. To evaluate the role of amyloid proteins made by the microbiota we exposed aged rats and transgenic C. elegans to E. coli producing the extracellular bacterial amyloid protein curli. Rats exposed to curli-producing bacteria displayed increased neuronal AS deposition in both gut and brain and enhanced microgliosis and astrogliosis compared to rats exposed to either mutant bacteria unable to synthesize curli, or to vehicle alone. Animals exposed to curli producing bacteria also had more expression of TLR2, IL-6 and TNF in the brain than the other two groups. There were no differences among the rat groups in survival, body weight, inflammation in the mouth, retina, kidneys or gut epithelia, and circulating cytokine levels. AS-expressing C. elegans fed on curli-producing bacteria also had enhanced AS aggregation. These results suggest that bacterial amyloid functions as a trigger to initiate AS aggregation through cross-seeding and also primes responses of the innate immune system.


Subject(s)
Amyloid/pharmacology , Bacterial Proteins/pharmacology , Caenorhabditis elegans/metabolism , Escherichia coli Proteins/pharmacology , Escherichia coli , Protein Aggregation, Pathological/chemically induced , Protein Aggregation, Pathological/metabolism , alpha-Synuclein/metabolism , Animals , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Rats , Rats, Inbred F344
20.
Biochemistry ; 55(32): 4519-32, 2016 08 16.
Article in English | MEDLINE | ID: mdl-26894491

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, caused by the degeneration of the dopaminergic neurons in the substantia nigra. Mutations in PARK7 (DJ-1) result in early onset autosomal recessive PD, and oxidative modification of DJ-1 has been reported to regulate the protective activity of DJ-1 in vitro. Glutathionylation is a prevalent redox modification of proteins resulting from the disulfide adduction of the glutathione moiety to a reactive cysteine-SH, and glutathionylation of specific proteins has been implicated in regulation of cell viability. Glutaredoxin 1 (Grx1) is the principal deglutathionylating enzyme within cells, and it has been reported to mediate protection of dopaminergic neurons in Caenorhabditis elegans; however many of the functional downstream targets of Grx1 in vivo remain unknown. Previously, DJ-1 protein content was shown to decrease concomitantly with diminution of Grx1 protein content in cell culture of model neurons (SH-SY5Y and Neuro-2A lines). In the current study we aimed to investigate the regulation of DJ-1 by Grx1 in vivo and characterize its glutathionylation in vitro. Here, with Grx(-/-) mice we provide show that Grx1 regulates protein levels of DJ-1 in vivo. Furthermore, with model neuronal cells (SH-SY5Y) we observed decreased DJ-1 protein content in response to treatment with known glutathionylating agents, and with isolated DJ-1 we identified two distinct sites of glutathionylation. Finally, we found that overexpression of DJ-1 in the dopaminergic neurons partly compensates for the loss of the Grx1 homologue in a C. elegans in vivo model of PD. Therefore, our results reveal a novel redox modification of DJ-1 and suggest a novel regulatory mechanism for DJ-1 content in vivo.


Subject(s)
Glutaredoxins/metabolism , Parkinson Disease/metabolism , Protein Deglycase DJ-1/metabolism , Amino Acid Sequence , Animals , Caenorhabditis elegans , Cell Line, Tumor , Cysteine/metabolism , Glutathione/metabolism , Humans , Mice , Protein Deglycase DJ-1/chemistry , Protein Deglycase DJ-1/deficiency , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL