Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 14(8)2023 08 18.
Article in English | MEDLINE | ID: mdl-37628697

ABSTRACT

In China, the sale of freshly slaughtered chickens is becoming increasingly popular in comparison with that of live chickens, and due to this emerging trend, the skin and feather follicle traits of yellow-feathered broilers have attracted a great deal of research attention. The feather follicle originates from the interaction between the epidermis and dermis in the early embryonic stage. Feather follicle morphogenesis is regulated by the Wnt, ectodysplasin (Eda), epidermal growth factor (EGF), fibroblast growth factor (FGF), bone morphogenetic protein (BMP), sonic hedgehog (Shh), Notch, and other signaling pathways that exist in epithelial and mesenchymal cells. The Wnt pathway is essential for feather follicle and feather morphogenesis. Eda interacts with Wnt to induce FGF expression, which attracts mesenchymal cell movement and aggregates to form feather follicle primordia. BMP acts as an inhibitor of the above signaling pathways to limit the size of the feather tract and distance between neighboring feather primordia in a dose-dependent manner. The Notch/Delta pathway can interact with the FGF pathway to promote feather bud formation. While not a part of the early morphogenesis of feather follicles, Shh and BMP signaling are involved in late feather branching. This review summarizes the roles of miRNAs/lncRNA in the regulation of feather follicle and feather growth and development and suggests topics that need to be solved in a future study. This review focuses on the regulatory mechanisms involved in feather follicle morphogenesis and analyzes the impact of SNP sites on feather follicle traits in poultry. This work may help us to understand the molecular regulatory networks influencing feather follicle growth and provide basic data for poultry carcass quality.


Subject(s)
Feathers , Hedgehog Proteins , Animals , Hedgehog Proteins/genetics , Chickens/genetics , Morphogenesis/genetics , Embryonic Development , Ectodysplasins , Fibroblast Growth Factors
2.
J Phys Chem Lett ; 14(1): 245-252, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36594895

ABSTRACT

Understanding carrier recombination processes in MAPb(BrxCl1-x)3 crystals is essential for their photoelectrical applications. In this work, carrier recombination dynamics in MAPb(BrxCl1-x)3 single crystals were studied by steady-state photoluminescence (PL), time-resolved photoluminescence (TRPL), and time-resolved microwave photoconductivity (TRMC). By comparing TRPL and TRMC, we find TRPL of MAPb(BrxCl1-x)3 (x < 0.98) single crystals is dominated by a hole trapping process while the long-lived component of TRMC is dominated by an electron trapping process. We also find both electron and hole trapping rates of MAPb(BrxCl1-x)3 (x < 0.98) crystals decrease with an increase in Br content. A temperature-dependent PL study shows there are shallow trap states besides the deep level trap states in the MAPb(Br0.82Cl0.18)3 crystal. The activation energy for holes in shallow trap states detrapped into the valence band is ∼0.1 eV, while the activation energy for free holes to be trapped into deep trap states is ∼0.4 eV. This work provides insight into carrier recombination processes in MAPb(BrxCl1-x)3 single crystals.

3.
Front Vet Sci ; 9: 964620, 2022.
Article in English | MEDLINE | ID: mdl-36246315

ABSTRACT

The semen quality of breeder cocks profoundly impacted the numbers of matched layer hens and the economic benefits of the poultry industry. Adequacy and balance of poultry nutrition, especially the energy provision, critically modulated the reproductive potential of breeder cocks, however, the underlying mechanism was still unclear. For the purpose of this study, a total of 90 yellow-feathered 13-week-old roosters with the same age in days and similar body weight (1,437 ± 44.3 g) were selected and randomly divided into the low energy diet (LE), the moderate energy diet (ME), and the high energy diet (HE) treatments. The phenotypic parameters related to reproduction include semen quality, fertility, and hatchability, and the testis morphological parameters, including seminiferous epithelium length (SEL), seminiferous tubule perimeter (STP), seminiferous tubule area (STA), and Johnsen score, were measured to investigate the regulatory effects of different energy diets on reproductive performances. Furthermore, spermatogenesis and sperm motility-related genes, which included the sry-related high mobility group box (SOX) gene family and sperm-associated antigen (SPAG) gene family, and mitochondria apoptosis-related genes, such as Cyt-C, Bcl-2, and Bax, were measured to determine the underlying mechanism of energy on the reproductive performances. The The results showed that the gonadosomatic index and sperm motility in the ME treatment significantly increased compared with the LE treatment. Chickens in the ME treatment showed a preferable performance of testis development, especially a significant increment of SEL and Johnsen Score, compared with the LE and HE treatments. Finally, spermatogenesis-related genes, which included SPAG6, SPAG16, SOX5, SOX6, and SOX13, and apoptosis-related genes of mitochondria, such as the Cyt-C and Bcl-2, were significantly upregulated in the ME treatment. This study concluded that proper energy provision stimulated regular energy metabolism for spermatogenesis and sperm capacitation, which finally increased semen quality and reproductive performances of breeder cocks.

4.
Front Genet ; 13: 1008649, 2022.
Article in English | MEDLINE | ID: mdl-36186474

ABSTRACT

MicroRNAs (miRNAs) might play critical roles in skeletal myofiber specification. In a previous study, we found that chicken miR-499-5p is specifically expressed in slow-twitch muscle and that its potential target gene is SOX6. In this study, we performed RNA sequencing to investigate the effects of SOX6 and miR-499-5p on the modulation and regulation of chicken muscle fiber type and its regulatory mechanism. The expression levels of miR-499-5p and SOX6 demonstrated opposing trends in different skeletal muscles and were associated with muscle fiber type composition. Differential expression analysis revealed that miR-499-5p overexpression led to significant changes in the expression of 297 genes in chicken primary myoblasts (CPMs). Myofiber type-related genes, including MYH7B and CSRP3, showed expression patterns similar to those in slow-twitch muscle. According to functional enrichment analysis, differentially expressed genes were mostly associated with muscle development and muscle fiber-related processes. SOX6 was identified as the target gene of miR-499-5p in CPM using target gene mining and luciferase reporter assays. SOX6 knockdown resulted in upregulation of the slow myosin genes and downregulation of fast myosin genes. Furthermore, protein-protein interaction network analysis revealed that MYH7B and RUNX2 may be the direct targets of SOX6. These results indicated that chicken miR-499-5p may promote slow-twitch muscle fiber formation by repressing SOX6 expression. Our study provides a dataset that can be used as a reference for animal meat quality and human muscle disease studies.

5.
BMC Genomics ; 23(1): 308, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35428174

ABSTRACT

BACKGROUND: Chicken intramuscular fat (IMF) content is closely related to meat quality and performance, such as tenderness and flavor. Abdominal fat (AF) in chickens is one of the main waste products at slaughter. Excessive AF reduces feed efficiency and carcass quality. RESULTS: To analyze the differential deposition of IMF and AF in chickens, gene expression profiles in the breast muscle (BM) and AF tissues of 18 animals were analyzed by differential expression analysis and weighted co-expression network analysis. The results showed that IMF deposition in BM was associated with pyruvate and citric acid metabolism through GAPDH, LDHA, GPX1, GBE1, and other genes. In contrast, AF deposition was related to acetyl CoA and glycerol metabolism through FABP1, ELOVL6, SCD, ADIPOQ, and other genes. Carbohydrate metabolism plays an essential role in IMF deposition, and fatty acid and glycerol metabolism regulate AF deposition. CONCLUSION: This study elucidated the molecular mechanism governing IMF and AF deposition through crucial genes and signaling pathways and provided a theoretical basis for producing high-quality broilers.


Subject(s)
Chickens , Glycerol , Abdominal Fat/metabolism , Adipose Tissue/metabolism , Animals , Chickens/genetics , Chickens/metabolism , Glycerol/metabolism , Lipid Metabolism/genetics , Muscle, Skeletal/metabolism
6.
J Poult Sci ; 58(4): 211-215, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34899015

ABSTRACT

To investigate the population structure and genetic diversity of indigenous chicken breeds in Guizhou, a total of 150 individual samples were collected from 12 breeds, including seven local chicken breeds in Guizhou Province, three Chinese native breeds found in other provinces, and two commercial breeds. The genotype datasets were obtained using a 50K single nucleotide polymorphism array method, and then a series of population analyses were performed. The obtained population parameters and linkage disequilibrium decay indicated a higher degree of genetic diversity in Guizhou chickens than in commercial breeds. Two Guizhou local breeds, Wumeng black-bone and Weining, were clustered with a breed from a neighboring province, Xinwen black-bone, which exhibited similar ancestral composition patterns. A newly found breed, Wumeng crested, had high genetic diversity and displayed genetic differences from other Guizhou breeds. These findings provide insight into the establishment of efficient conservation and utilization programs for Guizhou chicken breeds.

7.
Sci Rep ; 11(1): 20861, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34675224

ABSTRACT

SART and PMM are mainly composed of oxidative myofibers and glycolytic myofibers, respectively, and myofiber types profoundly influence postnatal muscle growth and meat quality. SART and PMM are composed of lncRNAs and circRNAs that participate in myofiber type regulation. To elucidate the regulatory mechanism of myofiber type, lncRNA and circRNA sequencing was used to systematically compare the transcriptomes of the SART and PMM of Chinese female Qingyuan partridge chickens at their marketing age. The luminance value (L*), redness value (a*), average diameter, cross-sectional area, and density difference between the PMM and SART were significant (p < 0.05). ATPase staining results showed that PMMs were all darkly stained and belonged to the glycolytic type, and the proportion of oxidative myofibers in SART was 81.7%. A total of 5 420 lncRNAs were identified, of which 365 were differentially expressed in the SART compared with the PMM (p < 0.05). The cis-regulatory analysis identified target genes that were enriched for specific GO terms and KEGG pathways (p < 0.05), including striated muscle cell differentiation, regulation of cell proliferation, regulation of muscle cell differentiation, myoblast differentiation, regulation of myoblast differentiation, and MAPK signaling pathway. Pathways and coexpression network analyses suggested that XR_003077811.1, XR_003072304.1, XR_001465942.2, XR_001465741.2, XR_001470487.1, XR_003077673.1 and XR_003074785.1 played important roles in regulating oxidative myofibers by TBX3, QKI, MYBPC1, CALM2, and PPARGC1A expression. A total of 10 487 circRNAs were identified, of which 305 circRNAs were differentially expressed in the SART compared with the PMM (p < 0.05). Functional enrichment analysis showed that differentially expressed circRNAs were involved in host gene expression and were enriched in the AMPK, calcium signaling pathway, FoxO signaling pathway, p53 signaling pathway, and cellular senescence. Novel_circ_004282 and novel_circ_002121 played important roles in regulating oxidative myofibers by PPP3CA and NFATC1 expression. Using lncRNA-miRNA/circRNA-miRNA integrated analysis, we identified many candidate interaction networks that might affect muscle fiber performance. Important lncRNA-miRNA-mRNA networks, such as lncRNA-XR_003074785.1/miR-193-3p/PPARGC1A, regulate oxidative myofibers. This study reveals that lncXR_003077811.1, lncXR_003072304.1, lncXR_001465942.2, lncXR_001465741.2, lncXR_001470487.1, lncXR_003077673.1, XR_003074785.1, novel_circ_004282 and novel_circ_002121 might regulate oxidative myofibers. The lncRNA-XR_003074785.1/miR-193-3p/PPARGC1A pathway might regulate oxidative myofibers. All these findings provide rich resources for further in-depth research on the regulatory mechanism of lncRNAs and circRNAs in myofibers.


Subject(s)
Chickens/genetics , Gene Regulatory Networks , Muscle Fibers, Skeletal/metabolism , RNA, Circular/genetics , RNA, Long Noncoding/genetics , Animals , Chickens/physiology , Female , Glycolysis , Transcriptome
8.
Poult Sci ; 100(12): 101496, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34695627

ABSTRACT

Wooden breast (WB) is a muscle disorder affecting modern commercial broiler chickens that leads to a palpable firm pectoralis major muscle and causes severe reduction in meat quality, resulting in substantial economic losses for the poultry industry. Most studies have focused on the regulatory mechanisms underlying this defect with respect to the gene and protein expression levels as well as the levels of metabolites. MicroRNAs (miRNAs) play critical roles in human muscular disorders, such as the Duchenne muscular dystrophy, by regulating the muscle regeneration or fibrosis processes. In this study, we investigated the miRNAs and related pathways that play important roles in the development of WB. We generated the miRNA expression profiles of the pectoralis major muscle samples from 3 WB-affected and 3 nonaffected chickens selected from a commercial broiler population via small RNA sequencing. A total of 578 miRNAs were identified in the chicken breast muscles from the initial analysis of the sequencing data. Of these, 23 miRNAs were significantly differentially expressed (false discovery rate [FDR] <0.05, log2|Foldchange| >1), including 20 upregulated and 3 downregulated miRNAs in the WB group compared to the normal group. Moreover, functional enrichment of the predicted target genes of differential miRNAs indicated that these miRNAs were involved in biological processes and pathways related to energy metabolism, apoptosis, focal adhesion, and development of blood vessels. Four differentially expressed miRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). We also highlighted several differentially expressed miRNAs, such as gga-miR-155, gga-miR-29c, and gga-miR-133, for their potential roles in the regulation of the development of WB. To the best of our knowledge, this is the first study investigating the miRNA expression profile of the breast muscle associated with WB. The findings of this study can be used to explore the potential molecular mechanisms of other muscle disorders in broilers and provide valuable information for chicken breeding.


Subject(s)
MicroRNAs , Muscular Diseases , Poultry Diseases , Animals , Chickens/genetics , High-Throughput Nucleotide Sequencing/veterinary , MicroRNAs/genetics , Muscular Diseases/genetics , Muscular Diseases/veterinary , Pectoralis Muscles , Poultry Diseases/genetics
9.
J Poult Sci ; 58(1): 5-11, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33519281

ABSTRACT

The aim of this study was to identify genes involved in comb development to provide insights into the molecular mechanism of chickens' comb formation. Fixation index (FST) and average number of base differences (π) of males with large and small combs were calculated based on whole-genome resequencing data. Chromosome regions with larger FST values and smaller π were considered candidate selection regions. Through further annotation of gene functions and pathways, we sought to screen possible selected genes associated with comb development. By screening whole genome resequencing data, FST and π were calculated using a 40 Kb sliding window strategy and eight regions were identified. Quantitative trait loci (QTL; FOX1 gene) related to comb length were found on chromosome 1. QTL (GLP1R, BTBD9, MIR6633, and MDGA1 genes) related to comb weight were found on chromosome 3. QTL (ALDH1A1, TMC1, and ANXA1 genes) associated with comb area were found on the Z chromosome. Nineteen genes, Wnt signaling pathway and neuroactive ligand-receptor interaction signaling pathway directly or indirectly related to comb growth and development were found through functional annotation and GO analysis. Among the selected genes LYN, GLP1R, FOX1, TBK1, STRAP, ST6GALNAC, and Wnt signaling pathways were related to immunity. MDGA1, BTBD9, MTSS1, SrGAPs, and neuroactive ligand receptor interaction signaling pathways related to neural function were screened. ALDH1A1, ANXAl, THBS, HIF-1α, and ACTN1 genes were related to heat dissipation. Among the selected genes FOX1, MDGAl, and ANXAl associated with immunity, neurological function, and heat dissipation function coincided with genes affecting the length, weight, and area of the comb. Comprehensive analysis suggested that comb development was due to multiple genes and signaling pathways.

10.
J Anim Breed Genet ; 138(1): 122-134, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32378263

ABSTRACT

Back and thigh skin of chickens showed significant differences in the thickness and the feather follicle density and size, which are important traits for slaughtered chickens' appearance. In the present study, global gene expression profiling was conducted in the back and thigh skin of chickens using Microarray technology. The results showed that 676 genes were differentially expressed between back and thigh skin. The expression of the differentially expressed genes (DEGs), including PPP1R3C, IGF1, PTCHD1, HOXB6, FGF9, CAMK4, SHH, BMP8B, FOXN1 and PTGER2, was validated by real-time quantitative polymerase chain reaction (RT-qPCR), and the results were consistent with microarray results. Functional analysis revealed that the DEGs were significantly involved in cell proliferation, differentiation, apoptosis, adhesion and transport process, and the pathways were significantly mapped into the ECM-receptor interaction, peroxisome, focal adhesion, Hedgehog and PPAR signalling pathways. Protein-protein interaction network analysis suggested that signalling pathways related to feathers morphogenesis and development, such as Wnt, FGF, MAPK, SHH and BMP signalling pathways, occupied important positions in the network. Genes involved in these signalling pathways and adhesion molecules might play a vital role in skin and feather follicle development. Further single nucleotide polymorphism (SNP) association analysis of Wnt3A showed that the AC genotype of SNP g.255361 C>A significantly increased the feather follicle density of thigh skin. Our findings may provide new insights on candidate genes and pathways related to skin and feather follicle formation of chickens.


Subject(s)
Chickens , Feathers , Animals , Chickens/genetics , Gene Expression Profiling/veterinary , Morphogenesis , Skin
11.
Sci Rep ; 10(1): 10619, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32606372

ABSTRACT

Skeletal muscle fibers are primarily categorized into oxidative and glycolytic fibers, and the ratios of different myofiber types are important factors in determining livestock meat quality. However, the molecular mechanism for determining muscle fiber types in chickens was hardly understood. In this study, we used RNA sequencing to systematically compare mRNA and microRNA transcriptomes of the oxidative muscle sartorius (SART) and glycolytic muscle pectoralis major (PMM) of Chinese Qingyuan partridge chickens. Among the 44,705 identified mRNAs in the two types of muscles, 3,457 exhibited significantly different expression patterns, including 2,364 up-regulated and 1,093 down-regulated mRNAs in the SART. A total of 698 chicken miRNAs were identified, including 189 novel miRNAs, among which 67 differentially expressed miRNAs containing 42 up-regulated and 25 down-regulated miRNAs in the SART were identified. Furthermore, function enrichment showed that the differentially expressed mRNAs and miRNAs were involved in energy metabolism, muscle contraction, and calcium, peroxisome proliferator-activated receptor (PPAR), insulin and adipocytokine signaling. Using miRNA-mRNA integrated analysis, we identified several candidate miRNA-gene pairs that might affect muscle fiber performance, viz, gga-miR-499-5p/SOX6 and gga-miR-196-5p/CALM1, which were supported by target validation using the dual-luciferase reporter system. This study revealed a mass of candidate genes and miRNAs involved in muscle fiber type determination, which might help understand the molecular mechanism underlying meat quality traits in chickens.


Subject(s)
MicroRNAs/metabolism , Muscle Fibers, Skeletal/metabolism , RNA, Messenger/metabolism , Transcriptome , Animals , Chickens , Gene Expression Profiling , Gene Regulatory Networks , MicroRNAs/genetics , Muscle, Skeletal/metabolism , Phenotype , RNA, Messenger/genetics
12.
FEBS Open Bio ; 9(6): 1109-1118, 2019 06.
Article in English | MEDLINE | ID: mdl-30972973

ABSTRACT

Bone morphogenetic protein 4 (BMP4) has been reported to regulate adipose development, but its role in preadipocyte proliferation has not been explored in vitro. Here, we investigated the effect of BMP4 on chicken preadipocyte proliferation using immortalized chicken preadipocytes (ICP1 cells) as a cell model. We report that BMP4 expression increases during preadipocyte proliferation. Overexpression and knockdown of BMP4 promotes and inhibits preadipocyte proliferation, respectively. In addition, overexpression of BMP4 decreased the number of preadipocytes at the G0/G1 phase of the cell cycle, and increased the proportion of cells at S phase. In contrast, knockdown of BMP4 increased the number of preadipocytes at the G0/G1 phase of the cell cycle, and decreased the proportion of cells at the S and G2 phases. Furthermore, overexpression of BMP4 promoted the expression of proliferating cell nuclear antigen (PCNA), Id2, cyclin E, and cyclin-dependent kinase 2 (CDK2), while knockdown of BMP4 inhibited the expression of Id2, cyclin E, and CDK2. Finally, neither BMP4 overexpression nor BMP4 knockdown affected cell apoptosis. Taken together, our results suggest that BMP4 may promote proliferation of ICP1 cells by driving cell cycle transition from G1 to S phase.


Subject(s)
Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism , Cell Proliferation/physiology , Chickens , Fibroblasts/metabolism , G1 Phase Cell Cycle Checkpoints/physiology , S Phase Cell Cycle Checkpoints/physiology , Animals , Apoptosis , Cell Line , Cyclin E/metabolism , Cyclin-Dependent Kinase 2/metabolism , Gene Knockdown Techniques , Inhibitor of Differentiation Protein 2/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Transfection , Up-Regulation
13.
Anim Biotechnol ; 30(2): 118-128, 2019 Apr.
Article in English | MEDLINE | ID: mdl-29557225

ABSTRACT

TNNI1 encodes the slow skeletal muscle isoform of troponin I. In the present study, the basic characteristic and expressing profile of the TNNI1 gene was first explored in Gaoyou ducks. Full-length TNNI1 cDNA of Gaoyou duck was obtained using reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The cDNA consisted of a 57-base pair (bp) 5'UTR, a 345-bp 3'UTR, and a 564-bp open reading frame. The predicted protein was predicted to be hydrophilic, nonsecretory protein and contained 17 phosphorylation sites. Multiple alignments and phylogenetic tree analyses showed that the predicted protein was relatively conserved in avian. TNNI1 mRNA could be detected in every tissue analyzed at 70 days of age, and the muscle tissues had relatively high expression level, with the highest level seen in leg muscle. The TNNI1 gene was differentially expressed in the breast muscle and leg muscle during embryonic and posthatching development. Our findings reveal the sequence characterization and expression patterns of the TNNI1 gene, which may provide correlative evidence that TNNI1 gene plays an important role in duck muscle fiber development and meat quality.


Subject(s)
Ducks/genetics , Gene Expression Regulation, Developmental/genetics , Meat/standards , Troponin I/genetics , Animals , Cloning, Molecular , DNA, Complementary/genetics , Ducks/growth & development , Female , Male , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/growth & development , Open Reading Frames/genetics , Phylogeny , Protein Isoforms , RNA, Messenger/genetics
14.
Asian-Australas J Anim Sci ; 31(10): 1558-1564, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29642684

ABSTRACT

OBJECTIVE: We report monitoring conservation effect for a Chinese indigenous chicken (Langshan) breed using major histocompatibility complex (MHC) and DNA barcords. METHODS: The full length of MHC B-G gene and mitochondrial cytochrome oxidase I (COI) gene in generations 0, 5, 10, 15, 16, and 17 was measured using re-sequencing and sequencing procedures, respectively. RESULTS: There were 292 single nucleotide polymorphisms of MHC B-G gene identified in six generations. Heterozygosity (He) and polymorphic information content (PIC) of MHC B-G gene in generations 10, 15, 16, and 17 remained stable. He and PIC of MHC B-G gene were different in six generations, with G10, G15, G16, G17 >G5>G0 (p<0.05). For the COI gene, there were five haplotypes in generations 0, 5, 10, 15, 16, and 17. Where Hap2 and Hap4 were the shared haplotypes, 164 individuals shared Hap2 haplotypes, while Hap1 and Hap3 were the shared haplotypes in generations 0 and 5 and Hap5 was a shared haplotype in generations 10, 15, 16, and 17. The sequence of COI gene in 6 generations was tested by Tajima's and D value, and the results were not significant, which were consistent with neutral mutation. There were no differences in generations 10, 15, 16, and 17for measured phenotypic traits. In other generations, for annual egg production, with G5, G10, G15, G16, G17>G0 (p<0.05). For age at the first egg and age at sexual maturity, with G10, G15, G16, G17>G5>G0 (p<0.05). CONCLUSION: Combined with the results of COI gene DNA barcodes, MHC B-G gene, and phenotypic traits we can see that genetic diversity remained stable from generations 10 to 17 and the equimultiple random matching pedigrees conservation population conservation effect of Langshan chicken was effective as measured by these criteria.

15.
Sci Rep ; 8(1): 2015, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29386544

ABSTRACT

The comb of the male is an important secondary sexual characteristic. Although quantitative trait loci (QTLs) related to comb size have been identified, molecular mechanisms underlying this trait remain mostly unknown. In this study, RNA sequencing (RNA-seq) was employed to compare whole transcriptomic differences between two groups of Partridge Shank chickens that are divergent in comb sizes. A total of 563 differentially expressed genes (DEGs) were identified, including 277 up-regulated and 286 down-regulated DEGs. According to the animal QTL database, eight DEGs including BMP2 and CHADL matching the reported QTLs were associated with the comb size. Functional annotation analysis revealed that DEGs were involved in cell communication and calcium signaling. Protein-protein interaction network analysis showed that STK32A, PIK3R1, EDN1, HSPA5, and HSPA8 have an impact on comb growth. Moreover, potential alternative splicing events and single nucleotide polymorphisms were also identified. Our data provide a source for identifying genes and pathways with functions critical to comb size and accelerate studies involving molecular mechanisms of this sexual ornament.


Subject(s)
Chickens/genetics , Comb and Wattles/growth & development , Gene Regulatory Networks , Quantitative Trait Loci , Transcriptome , Animals , Avian Proteins/genetics , Avian Proteins/metabolism , Chickens/growth & development , Male
16.
Dev Genes Evol ; 225(3): 139-48, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25963597

ABSTRACT

The insulin-like growth factor I (IGF-I)-calcineurin (CaN)-NFATc signaling pathways have been implicated in the regulation of myocyte hypertrophy and fiber-type specificity. In the present study, the expression of the CnAα, NFATc3, and IGF-I genes was quantified by RT-PCR for the first time in the breast muscle (BM) and leg muscle (LM) on days 13, 17, 21, 25, and 27 of embryonic development, as well as at 7 days posthatching (PH), in Gaoyou and Jinding ducks, which differ in their muscle growth rates. Consistent expression patterns of CnAα, NFATc3, and IGF-I were found in the same anatomical location at different development stages in both duck breeds, showing significant differences in an age-specific fashion. However, the three genes were differentially expressed in the two different anatomical locations (BM and LM). CnAα, NFATc3, and IGF-I messenger RNA (mRNA) could be detected as early as embryonic day 13 (ED13), and the highest level appeared at this stage in both BM and LM. Significant positive relationships were observed in the expression of the studied genes in the BM and LM of both duck breeds. Also, the expression of these three genes showed a positive relationship with the percentage of type IIb fibers and a negative relationship with the percentage of type I fibers and type IIa fibers. Our data indicate differential expression and coordinated developmental regulation of the selected genes involved in the IGF-I-calcineurin-NFATc3 pathway in duck skeletal muscle during embryonic and early PH growth and development; these data also indicate that this signaling pathway might play a role in the regulation of myofiber type transition.


Subject(s)
Ducks/genetics , Meat , Muscle, Skeletal/chemistry , Animals , Ducks/classification , Ducks/growth & development , Ducks/metabolism , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Muscle, Skeletal/embryology , Muscle, Skeletal/metabolism , Signal Transduction , Transcriptome
17.
Gene ; 567(2): 235-43, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-25943637

ABSTRACT

Genetic selection is a powerful tool for modifying poultry muscle yield. Insulin-like growth factor I (IGF-I) and myostatin (MSTN) are important regulators of muscle growth, especially in the myogenesis stage. This study compared the developmental pattern of the pectoralis major (PM) and lateral gastrocnemius (LM) muscles, mRNA expression characterization of IGF-I and MSTN-A and their correlation between 14 days in ovo and 1 week post-hatch in two Chinese local duck breeds. During early development, the growth of duck PM and LM followed an asynchronous pattern. Variations in PM growth rate observed with development followed the relative variations of MSTN and IGF-I expression; however, the same behavior was not observed in LM. Moreover, the profile of IGF-I expression in duck skeletal muscles indicated that genetic selection for high meat-yield poultry has altered the temporal expression of IGF-I and affected cellular characteristics and mass by hatch in a PM-specific manner. The MSTN-A expression profile showed synchronization with the growth of skeletal muscle and peaks of myofiber proliferation. The expression patterns of IGF-I and MSTN suggest that duck pectoralis fibers are prioritized for proliferation in embryogenesis. The IGF-1/MSTN-A mRNA ratios in PM and LM presented very similar trends in the changes of myofiber characteristics, and differences in the IGF-1/MSTN-A mRNA ratio in PM between the two breeds corresponded to the timing of differences in PM mass between the varieties. Our results support the hypothesis that relative levels of IGF-I and MSTN mRNA may participate in ordering muscle growth rates with selected development.


Subject(s)
Avian Proteins/metabolism , Ducks/growth & development , Insulin-Like Growth Factor I/metabolism , Muscle Development , Myostatin/metabolism , Pectoralis Muscles/growth & development , Animals , Avian Proteins/genetics , Breeding , Ducks/genetics , Ducks/metabolism , Food Quality , Insulin-Like Growth Factor I/genetics , Meat/standards , Myostatin/genetics , Pectoralis Muscles/metabolism , RNA, Messenger , Weight Gain
18.
Gene ; 559(1): 38-43, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25577952

ABSTRACT

In this study, the ontogeny of body and liver weight and the pattern of related gene mRNA expression in the hypothalamus-pituitary growth axis (HPGA) of two different duck breeds (Anas platyrhynchos domestica) were compared during embryonic and post-hatch development. Duck hypothalamic growth hormone release hormone (GHRH), somatostatin (SS), pituitary growth hormone (GH), liver growth hormone receptor (GHR) and insulin-like growth factor-I (IGF-1) mRNA were first detected on the 13th embryonic day. During early duck development, SS maintained a lower expression status, whereas the other four genes exhibited highly significant variations in an age-specific manner. Highly significant breed specificity was observed with respect to hepatic IGF-1 mRNA expression, which showed a significant breed-age interaction effect. Compared with previous studies on chickens, significant species differences were observed regarding the mRNA expression of bird embryonic HPGA-related genes. During early development, highly significant breed and age specificity were observed with respect to developmental changes in body and liver weight, and varying degrees of significant linear correlation were found between these performances and the mRNA expression of HPGA-related genes in the duck HPGA. These results suggest that different genetic backgrounds may lead to differences in duck growth and HPGA-related gene mRNA expression, and the differential mRNA expression of related genes in the duck HPGA may be particularly important in the early growth of ducks. Furthermore, hepatic IGF-1 mRNA expression presented highly significant breed specificity, and evidence suggests the involvement of hepatic IGF-1 in mediating genetic effects on embryo and offspring growth in ducks.


Subject(s)
Ducks/embryology , Embryo, Nonmammalian/embryology , Embryonic Development/physiology , Gene Expression Regulation, Developmental/physiology , Hypothalamo-Hypophyseal System/embryology , RNA, Messenger/biosynthesis , Animals , Avian Proteins/biosynthesis , Avian Proteins/genetics , Ducks/genetics , Insulin-Like Growth Factor I/biosynthesis , Insulin-Like Growth Factor I/genetics , Liver/embryology , RNA, Messenger/genetics
19.
Mol Biol Rep ; 40(1): 289-94, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23184001

ABSTRACT

Chicken prolactin (PRL) is a physiological candidate gene for egg production. Variations of T8052C and G8113C in exon 5 of PRL gene may associate with chicken egg production. The objective of the study was to investigate the association of these two single nucleotide polymorphisms in PRL gene with egg production of Recessive White chickens and Qingyuan Partridge chickens. Genotyping was performed by polymerase chain reaction-ligase detection reaction (PCR-LDR) method. The T8052C and G8113C of PRL were significantly associated with age at first egg (AFE) and total egg number at 300 days of age (EN 300). A significant association was also found between T8052C-G8113C haplotypes and AFE as well as EN300, the H2H3 was the most advantageous diplotype for egg production. We putatively drew the conclusion that these two SNPs in PRL gene as well as their haplotypes could be used as the potential molecular markers for egg production traits in chicken.


Subject(s)
Chickens/physiology , Eggs , Polymorphism, Genetic , Prolactin/genetics , Alleles , Animals , Female , Gene Frequency , Genotype , Haplotypes , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , Reproduction/genetics
20.
Mol Phylogenet Evol ; 57(2): 634-40, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20674751

ABSTRACT

China is particularly rich in duck genetic resources. In order to reveal the genetic diversity and origin of Chinese domestic duck, the 667 bp control region of mitochondrial DNA of 238 domestic ducks from 26 indigenous breeds, 25 wild mallards and nine spot-billed ducks were sequenced and analyzed them together with the published data for 12 mallards and nine spot-billed ducks. The haplotype diversity (Hd, 0.645) and average nucleotide diversity (Pi, 0.115%) indicate low genetic diversity of Chinese domestic ducks. The NJ phylogenetic tree and reduced median-joining network chart were constructed using a total of 72 haplotypes. The genetic contribution of mallard (Anas platyrhynchos) can be detected in most of Chinese indigenous duck breeds and that of spot-billed duck (Anas zonorhyncha) can also be detected in few Chinese indigenous duck breeds. The results indicated that the Chinese domestic ducks mainly derived from mallard (A. platyrhynchos) and few derived from spot-billed duck (A. zonorhyncha).


Subject(s)
Animals, Domestic/genetics , Ducks/classification , Ducks/genetics , Genetic Variation/genetics , Phylogeny , Animals , Animals, Domestic/classification , China , DNA, Mitochondrial/genetics , Polymerase Chain Reaction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...