Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.125
Filter
1.
Heliyon ; 10(9): e30640, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38774102

ABSTRACT

The skeletal muscle is the largest organ in mammals and is the primary motor function organ of the body. Our previous research has shown that long non-coding RNAs (lncRNAs) are significant in the epigenetic control of skeletal muscle development. Here, we observed progressive upregulation of lncRNA 4930581F22Rik expression during skeletal muscle differentiation. Knockdown of lncRNA 4930581F22Rik hindered skeletal muscle differentiation and resulted in the inhibition of the myogenic markers MyHC and MEF2C. Furthermore, we found that lncRNA 4930581F22Rik regulates myogenesis via the ERK/MAPK signaling pathway, and this effect could be attenuated by the ERK-specific inhibitor PD0325901. Additionally, in vivo mice injury model results revealed that lncRNA 4930581F22Rik is involved in skeletal muscle regeneration. These results establish a theoretical basis for understanding the contribution of lncRNAs in skeletal muscle development and regeneration.

2.
Toxics ; 12(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38787143

ABSTRACT

Recent findings indicate that air pollution contributes to the onset and advancement of chronic obstructive pulmonary disease (COPD). Nevertheless, there is insufficient research indicating that air pollution is linked to COPD in the region of inland northwest China. Daily hospital admission records for COPD, air pollutant levels, and meteorological factor information were collected in Jiuquan for this study between 1 January 2018 and 31 December 2019. We employed a distributed lag non-linear model (DLNM) integrated with the generalized additive model (GAM) to assess the association between air pollution and hospital admissions for COPD with single lag days from lag0 to lag7 and multiday moving average lag days from lag01 to lag07. For example, the pollutant concentration on the current day was lag0, and on the prior 7th day was lag7. The present and previous 7-day moving average pollutant concentration was lag07. Gender, age, and season-specific stratified analyses were also carried out. It is noteworthy that the delayed days exhibited a different pattern, and the magnitude of associations varied. For NO2 and CO, obvious associations with hospitalizations for COPD were found at lag1, lag01-lag07, and lag03-lag07, with the biggest associations at lag05 and lag06 [RR = 1.015 (95%CI: 1.008, 1.023) for NO2, RR = 2.049 (95%CI: 1.416, 2.966) for CO], while only SO2 at lag02 was appreciably linked to hospitalizations for COPD [1.167 (95%CI: 1.009, 1.348)]. In contrast, short-term encounters with PM2.5, PM10, and O3 were found to have no significant effects on COPD morbidity. The lag effects of NO2 and CO were stronger than those of PM2.5 and PM10. Males and those aged 65 years or older were more vulnerable to air pollution. When it came to the seasons, the impacts appeared to be more pronounced in the cold season. In conclusion, short-term encounters with NO2 and CO were significantly correlated with COPD hospitalization in males and the elderly (≥65).

3.
Theriogenology ; 225: 1-8, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38781848

ABSTRACT

An established technology to create cloned animals is through the use of somatic cell nuclear transfer (SCNT), in which reprogramming the somatic cell nucleus to a totipotent state by enucleated oocyte cytoplasm is a necessary process, including telomere length reprogramming. The limitation of this technology; however, is that the live birth rate of offspring produced through SCNT is significantly lower than that of IVF. Whether and how telomere length play a role in the development of cloned animals is not well understood. Only a few studies have evaluated this association in cloned mice, and fewer still in cloned cows. In this study, we investigated the difference in telomere length as well as the abundance of some selected molecules between newborn deceased cloned calves and normal cows of different ages either produced by SCNT or via natural conception, in order to evaluate the association between telomere length and abnormal development of cloned cows. The absolute telomere length and relative mitochondrial DNA (mtDNA) copy number were determined by real-time quantitative PCR (qPCR), telomere related gene abundance by reverse-transcription quantitative PCR (RT-qPCR), and senescence-associated ß-galactosidase (SA-ß-gal) expression by SA-ß-gal staining. The results demonstrate that the newborn deceased SCNT calves had significantly shortened telomere lengths compared to newborn naturally conceived calves and newborn normal SCNT calves. Significantly lower mtDNA copy number, and significantly lower relative abundance of LMNB1 and TERT, higher relative abundance of CDKN1A, and aberrant SA-ß-gal expression were observed in the newborn deceased SCNT calves, consistent with the change in telomere length. These results demonstrate that abnormal telomere shortening, lower mtDNA copy number and abnormal abundance of related genes were specific to newborn deceased SCNT calves, suggesting that abnormally short telomere length may be associated with abnormal development in the cloned calves.


Subject(s)
Animals, Newborn , Cloning, Organism , DNA Copy Number Variations , DNA, Mitochondrial , Telomere , Animals , Cloning, Organism/veterinary , Cattle/genetics , DNA, Mitochondrial/genetics , Telomere/genetics , Nuclear Transfer Techniques/veterinary , Female , Telomere Homeostasis
4.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 450-455, 2024 May 15.
Article in Chinese | MEDLINE | ID: mdl-38802903

ABSTRACT

OBJECTIVES: To investigate the incidence rate, clinical characteristics, and prognosis of neonatal stroke in Shenzhen, China. METHODS: Led by Shenzhen Children's Hospital, the Shenzhen Neonatal Data Collaboration Network organized 21 institutions to collect 36 cases of neonatal stroke from January 2020 to December 2022. The incidence, clinical characteristics, treatment, and prognosis of neonatal stroke in Shenzhen were analyzed. RESULTS: The incidence rate of neonatal stroke in 21 hospitals from 2020 to 2022 was 1/15 137, 1/6 060, and 1/7 704, respectively. Ischemic stroke accounted for 75% (27/36); boys accounted for 64% (23/36). Among the 36 neonates, 31 (86%) had disease onset within 3 days after birth, and 19 (53%) had convulsion as the initial presentation. Cerebral MRI showed that 22 neonates (61%) had left cerebral infarction and 13 (36%) had basal ganglia infarction. Magnetic resonance angiography was performed for 12 neonates, among whom 9 (75%) had involvement of the middle cerebral artery. Electroencephalography was performed for 29 neonates, with sharp waves in 21 neonates (72%) and seizures in 10 neonates (34%). Symptomatic/supportive treatment varied across different hospitals. Neonatal Behavioral Neurological Assessment was performed for 12 neonates (33%, 12/36), with a mean score of (32±4) points. The prognosis of 27 neonates was followed up to around 12 months of age, with 44% (12/27) of the neonates having a good prognosis. CONCLUSIONS: Ischemic stroke is the main type of neonatal stroke, often with convulsions as the initial presentation, involvement of the middle cerebral artery, sharp waves on electroencephalography, and a relatively low neurodevelopment score. Symptomatic/supportive treatment is the main treatment method, and some neonates tend to have a poor prognosis.


Subject(s)
Stroke , Humans , Male , Infant, Newborn , Female , China/epidemiology , Stroke/epidemiology , Prognosis , Electroencephalography , Incidence , Magnetic Resonance Imaging
5.
BMC Genomics ; 25(1): 406, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724906

ABSTRACT

Most proteins exert their functions by interacting with other proteins, making the identification of protein-protein interactions (PPI) crucial for understanding biological activities, pathological mechanisms, and clinical therapies. Developing effective and reliable computational methods for predicting PPI can significantly reduce the time-consuming and labor-intensive associated traditional biological experiments. However, accurately identifying the specific categories of protein-protein interactions and improving the prediction accuracy of the computational methods remain dual challenges. To tackle these challenges, we proposed a novel graph neural network method called GNNGL-PPI for multi-category prediction of PPI based on global graphs and local subgraphs. GNNGL-PPI consisted of two main components: using Graph Isomorphism Network (GIN) to extract global graph features from PPI network graph, and employing GIN As Kernel (GIN-AK) to extract local subgraph features from the subgraphs of protein vertices. Additionally, considering the imbalanced distribution of samples in each category within the benchmark datasets, we introduced an Asymmetric Loss (ASL) function to further enhance the predictive performance of the method. Through evaluations on six benchmark test sets formed by three different dataset partitioning algorithms (Random, BFS, DFS), GNNGL-PPI outperformed the state-of-the-art multi-category prediction methods of PPI, as measured by the comprehensive performance evaluation metric F1-measure. Furthermore, interpretability analysis confirmed the effectiveness of GNNGL-PPI as a reliable multi-category prediction method for predicting protein-protein interactions.


Subject(s)
Algorithms , Computational Biology , Neural Networks, Computer , Protein Interaction Mapping , Protein Interaction Mapping/methods , Computational Biology/methods , Protein Interaction Maps , Humans , Proteins/metabolism
6.
bioRxiv ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38559152

ABSTRACT

As large-scale biobanks provide increasing access to deep phenotyping and genomic data, genome-wide association studies (GWAS) are rapidly uncovering the genetic architecture behind various complex traits and diseases. GWAS publications typically make their summary-level data (GWAS summary statistics) publicly available, enabling further exploration of genetic overlaps between phenotypes gathered from different studies and cohorts. However, systematically analyzing high-dimensional GWAS summary statistics for thousands of phenotypes can be both logistically challenging and computationally demanding. In this paper, we introduce BIGA (https://bigagwas.org/), a website that aims to offer unified data analysis pipelines and processed data resources for cross-trait genetic architecture analyses using GWAS summary statistics. We have developed a framework to implement statistical genetics tools on a cloud computing platform, combined with extensive curated GWAS data resources. Through BIGA, users can upload data, submit jobs, and share results, providing the research community with a convenient tool for consolidating GWAS data and generating new insights.

7.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(3): 321-324, 2024 Mar 15.
Article in Chinese | MEDLINE | ID: mdl-38557387

ABSTRACT

The male patient, one day old, was admitted to the hospital due to hypoglycemia accompanied by apnea appearing six hours after birth. The patient had transient hypoglycemia early after birth, and acute heart failure suddenly occurred on the eighth day after birth. Laboratory tests showed significantly reduced levels of adrenocorticotropic hormone and cortisol, and pituitary magnetic resonance imaging was normal. Genetic testing results showed that the patient had probably pathogenic compound heterozygous mutations of the TBX19 gene (c.917-2A>G+c.608C>T), inherited respectively from the parents. The patient was conclusively diagnosed with congenital isolated adrenocorticotropic hormone deficiency caused by mutation of the TBX19 gene. Upon initiating hydrocortisone replacement therapy, cardiac function rapidly returned to normal. After being discharged, the patient continued with the hydrocortisone replacement therapy. By the 18-month follow-up, the patient was growing and developing well. In neonates, unexplained acute heart failure requires caution for possible endocrine hereditary metabolic diseases, and timely cortisol testing and genetic testing should be conducted.


Subject(s)
Adrenal Insufficiency , Heart Failure , Hypoglycemia , Infant, Newborn , Humans , Male , Hydrocortisone/therapeutic use , Hypoglycemia/etiology , Adrenal Insufficiency/congenital , Adrenal Insufficiency/diagnosis , Adrenal Insufficiency/genetics , Heart Failure/etiology , Heart Failure/genetics , Adrenocorticotropic Hormone
8.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1064-1072, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621913

ABSTRACT

This article explored the mechanism by which ginsenoside Re reduces hypoxia/reoxygenation(H/R) injury in H9c2 cells by regulating mitochondrial biogenesis through nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)/peroxisome prolife-rator-activated receptor gamma coactivator-1α(PGC-1α) pathway. In this study, H9c2 cells were cultured in hypoxia for 4 hours and then reoxygenated for 2 hours to construct a cardiomyocyte H/R injury model. After ginsenoside Re pre-administration intervention, cell activity, superoxide dismutase(SOD) activity, malondialdehyde(MDA) content, intracellular reactive oxygen species(Cyto-ROS), and intramitochondrial reactive oxygen species(Mito-ROS) levels were detected to evaluate the protective effect of ginsenoside Re on H/R injury of H9c2 cells by resisting oxidative stress. Secondly, fluorescent probes were used to detect changes in mitochondrial membrane potential(ΔΨ_m) and mitochondrial membrane permeability open pore(mPTP), and immunofluorescence was used to detect the expression level of TOM20 to study the protective effect of ginsenoside Re on mitochondria. Western blot was further used to detect the protein expression levels of caspase-3, cleaved caspase-3, Cyto C, Nrf2, HO-1, and PGC-1α to explore the specific mechanism by which ginsenoside Re protected mitochondria against oxidative stress and reduced H/R injury. Compared with the model group, ginse-noside Re effectively reduced the H/R injury oxidative stress response of H9c2 cells, increased SOD activity, reduced MDA content, and decreased Cyto-ROS and Mito-ROS levels in cells. Ginsenoside Re showed a good protective effect on mitochondria by increasing ΔΨ_m, reducing mPTP, and increasing TOM20 expression. Further studies showed that ginsenoside Re promoted the expression of Nrf2, HO-1, and PGC-1α proteins, and reduced the activation of the apoptosis-related regulatory factor caspase-3 to cleaved caspase-3 and the expression of Cyto C protein. In summary, ginsenoside Re can significantly reduce I/R injury in H9c2 cells. The specific mechanism is related to the promotion of mitochondrial biogenesis through the Nrf2/HO-1/PGC-1α pathway, thereby increasing the number of mitochondria, improving mitochondrial function, enhancing the ability of cells to resist oxidative stress, and alleviating cell apoptosis.


Subject(s)
Ginsenosides , NF-E2-Related Factor 2 , Organelle Biogenesis , Humans , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Caspase 3/metabolism , Signal Transduction , Oxidative Stress , Hypoxia , Myocytes, Cardiac , Apoptosis , Superoxide Dismutase/metabolism
9.
Article in English | MEDLINE | ID: mdl-38683273

ABSTRACT

Phthalate acid esters (PAEs) and their metabolites, such as di-n-butyl phthalate (DBP) and mono-n-butyl phthalate (MBP), are known to cause male reproductive damage. Lactiplantibacillus plantarum RS20D has demonstrated the ability to remove both DBP and MBP in vitro, suggesting its potential as a detoxifying agent against these compounds. This study aimed to investigate the protective effects of RS20D on DBP or MBP-induced male reproductive toxicity in adolescent rats. Oral administration of RS20D significantly mitigated the histological damage to the testes caused by MBP or DBP, restored sperm concentration, morphological abnormalities, and the proliferation index in MBP-exposed rats, and partially reversed spermatogenic damage in DBP-exposed rats. Furthermore, RS20D restored serum levels of estradiol (E2) and testosterone, and superoxide dismutase (SOD) activity in DBP-exposed rats, significantly increased testosterone levels in MBP-exposed rats, and restored copper (Cu) concentrations in the testes after exposure to DBP or MBP. Additionally, RS20D effectively modulated the intestinal microbiota in DBP-exposed rats and partially ameliorated dysbiosis induced by MBP, which may be associated with the alleviation of reproductive toxic effects induced by DBP or MBP. In conclusion, this study demonstrates that RS20D administration can alleviate male reproductive toxicity and gut dysbacteriosis induced by DBP or MBP exposure, providing a dietary strategy for the bioremediation of PAEs and their metabolites.

10.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 394-402, 2024 Apr 15.
Article in Chinese | MEDLINE | ID: mdl-38660904

ABSTRACT

OBJECTIVES: To compare the repair effects of different doses of human umbilical cord mesenchymal stem cells (hUC-MSCs) on white matter injury (WMI) in neonatal rats. METHODS: Two-day-old Sprague-Dawley neonatal rats were randomly divided into five groups: sham operation group, WMI group, and hUC-MSCs groups (low dose, medium dose, and high dose), with 24 rats in each group. Twenty-four hours after successful establishment of the neonatal rat white matter injury model, the WMI group was injected with sterile PBS via the lateral ventricle, while the hUC-MSCs groups received injections of hUC-MSCs at different doses. At 14 and 21 days post-modeling, hematoxylin and eosin staining was used to observe pathological changes in the tissues around the lateral ventricles. Real-time quantitative polymerase chain reaction was used to detect the quantitative expression of myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) mRNA in the brain tissue. Immunohistochemistry was employed to observe the expression levels of GFAP and neuron-specific nuclear protein (NeuN) in the tissues around the lateral ventricles. TUNEL staining was used to observe cell apoptosis in the tissues around the lateral ventricles. At 21 days post-modeling, the Morris water maze test was used to observe the spatial learning and memory capabilities of the neonatal rats. RESULTS: At 14 and 21 days post-modeling, numerous cells with nuclear shrinkage and rupture, as well as disordered arrangement of nerve fibers, were observed in the tissues around the lateral ventricles of the WMI group and the low dose group. Compared with the WMI group, the medium and high dose groups showed alleviated pathological changes; the arrangement of nerve fibers in the medium dose group was relatively more orderly compared with the high dose group. Compared with the WMI group, there was no significant difference in the expression levels of MBP and GFAP mRNA in the low dose group (P>0.05), while the expression levels of MBP mRNA increased and GFAP mRNA decreased in the medium and high dose groups. The expression level of MBP mRNA in the medium dose group was higher than that in the high dose group, and the expression level of GFAP mRNA in the medium dose group was lower than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the protein expression of GFAP and NeuN in the low dose group (P>0.05), while the expression of NeuN protein increased and GFAP protein decreased in the medium and high dose groups. The expression of NeuN protein in the medium dose group was higher than that in the high dose group, and the expression of GFAP protein in the medium dose group was lower than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the number of apoptotic cells in the low dose group (P>0.05), while the number of apoptotic cells in the medium and high dose groups was less than that in the WMI group, and the number of apoptotic cells in the medium dose group was less than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the escape latency time in the low dose group (P>0.05); starting from the third day of the latency period, the escape latency time in the medium dose group was less than that in the WMI group (P<0.05). The medium and high dose groups crossed the platform more times than the WMI group (P<0.05). CONCLUSIONS: Low dose hUC-MSCs may yield unsatisfactory repair effects on WMI in neonatal rats, while medium and high doses of hUC-MSCs have significant repair effects, with the medium dose demonstrating superior efficacy.


Subject(s)
Animals, Newborn , Mesenchymal Stem Cell Transplantation , Rats, Sprague-Dawley , Umbilical Cord , White Matter , Animals , Rats , Humans , Umbilical Cord/cytology , White Matter/pathology , White Matter/metabolism , Glial Fibrillary Acidic Protein/metabolism , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/analysis , Mesenchymal Stem Cells , Myelin Basic Protein/genetics , Myelin Basic Protein/analysis , Myelin Basic Protein/metabolism , Male , Apoptosis , Female , RNA, Messenger/analysis , RNA, Messenger/metabolism
11.
Front Pharmacol ; 15: 1375522, 2024.
Article in English | MEDLINE | ID: mdl-38628639

ABSTRACT

Accurate calculation of drug-target affinity (DTA) is crucial for various applications in the pharmaceutical industry, including drug screening, design, and repurposing. However, traditional machine learning methods for calculating DTA often lack accuracy, posing a significant challenge in accurately predicting DTA. Fortunately, deep learning has emerged as a promising approach in computational biology, leading to the development of various deep learning-based methods for DTA prediction. To support researchers in developing novel and highly precision methods, we have provided a comprehensive review of recent advances in predicting DTA using deep learning. We firstly conducted a statistical analysis of commonly used public datasets, providing essential information and introducing the used fields of these datasets. We further explored the common representations of sequences and structures of drugs and targets. These analyses served as the foundation for constructing DTA prediction methods based on deep learning. Next, we focused on explaining how deep learning models, such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Transformer, and Graph Neural Networks (GNNs), were effectively employed in specific DTA prediction methods. We highlighted the unique advantages and applications of these models in the context of DTA prediction. Finally, we conducted a performance analysis of multiple state-of-the-art methods for predicting DTA based on deep learning. The comprehensive review aimed to help researchers understand the shortcomings and advantages of existing methods, and further develop high-precision DTA prediction tool to promote the development of drug discovery.

12.
Ecotoxicol Environ Saf ; 276: 116301, 2024 May.
Article in English | MEDLINE | ID: mdl-38599159

ABSTRACT

To study the heavy metal accumulation and its impact on insect exterior and chromosome morphology, and reveal the molecular mechanism of insects adapting to long-term heavy metal compound pollution habitats, this study, in the Diaojiang river basin, which has been polluted by heavy metals(HMs) for nearly a thousand years, two Eucriotettix oculatus populations was collected from mining and non-mining areas. It was found that the contents of 7 heavy metals (As, Cd, Pb, Zn, Cu, Sn, Sb) in E. oculatus of the mining area were higher than that in the non-mining 1-11 times. The analysis of morphology shows that the external morphology, the hind wing type and the chromosomal morphology of E. oculatus are significant differences between the two populations. Based on the heavy metal accumulation,morphological change, and stable population density, it is inferred that the mining area population has been affected by heavy metals and has adapted to the environment of heavy metals pollution. Then, by analyzing the transcriptome of the two populations, it was found that the digestion, immunity, excretion, endocrine, nerve, circulation, reproductive and other systems and lysosomes, endoplasmic reticulum and other cell structure-related gene expression were suppressed. This shows that the functions of the above-mentioned related systems of E. oculatus are inhibited by heavy metal stress. However, it has also been found that through the significant up-regulation of genes related to the above system, such as ATP2B, pepsin A, ubiquitin, AQP1, ACOX, ATPeV0A, SEC61A, CANX, ALDH7A1, DLD, aceE, Hsp40, and catalase, etc., and the down-regulation of MAPK signalling pathway genes, can enhanced nutrient absorption, improve energy metabolism, repair damaged cells and degrade abnormal proteins, maintain the stability of cells and systems, and resist heavy metal damage so that E. oculatus can adapt to the environment of heavy metal pollution for a long time.


Subject(s)
Grasshoppers , Metals, Heavy , Water Pollutants, Chemical , Animals , Metals, Heavy/toxicity , Water Pollutants, Chemical/toxicity , Grasshoppers/drug effects , Grasshoppers/anatomy & histology , Environmental Monitoring/methods , Mining , China , Adaptation, Physiological/drug effects , Transcriptome/drug effects , Rivers/chemistry
13.
BMC Bioinformatics ; 25(1): 156, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38641811

ABSTRACT

BACKGROUND: Accurately identifying drug-target interaction (DTI), affinity (DTA), and binding sites (DTS) is crucial for drug screening, repositioning, and design, as well as for understanding the functions of target. Although there are a few online platforms based on deep learning for drug-target interaction, affinity, and binding sites identification, there is currently no integrated online platforms for all three aspects. RESULTS: Our solution, the novel integrated online platform Drug-Online, has been developed to facilitate drug screening, target identification, and understanding the functions of target in a progressive manner of "interaction-affinity-binding sites". Drug-Online platform consists of three parts: the first part uses the drug-target interaction identification method MGraphDTA, based on graph neural networks (GNN) and convolutional neural networks (CNN), to identify whether there is a drug-target interaction. If an interaction is identified, the second part employs the drug-target affinity identification method MMDTA, also based on GNN and CNN, to calculate the strength of drug-target interaction, i.e., affinity. Finally, the third part identifies drug-target binding sites, i.e., pockets. The method pt-lm-gnn used in this part is also based on GNN. CONCLUSIONS: Drug-Online is a reliable online platform that integrates drug-target interaction, affinity, and binding sites identification. It is freely available via the Internet at http://39.106.7.26:8000/Drug-Online/ .


Subject(s)
Deep Learning , Drug Interactions , Binding Sites , Drug Delivery Systems , Drug Evaluation, Preclinical
14.
Biochem Biophys Res Commun ; 715: 149999, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38678787

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD), a chronic liver condition and metabolic disorder, has emerged as a significant health issue worldwide. D-mannose, a natural monosaccharide widely existing in plants and animals, has demonstrated metabolic regulatory properties. However, the effect and mechanism by which D-mannose may counteract NAFLD have not been studied. In this study, network pharmacology followed by molecular docking analysis was utilized to identify potential targets of mannose against NAFLD, and the leptin receptor-deficient, genetically obese db/db mice was employed as an animal model of NAFLD to validate the regulation of D-mannose on core targets. As a result, 67 targets of mannose are predicted associated with NAFLD, which are surprisingly centered on the mechanistic target of rapamycin (mTOR). Further analyses suggest that mTOR signaling is functionally enriched in potential targets of mannose treating NAFLD, and that mannose putatively binds to mTOR as a core mechanism. Expectedly, repeated oral gavage of supraphysiological D-mannose ameliorates liver steatosis of db/db mice, which is based on suppression of hepatic mTOR signaling. Moreover, daily D-mannose administration reduced hepatic expression of lipogenic regulatory genes in counteracting NAFLD. Together, these findings reveal D-mannose as an effective and potential NAFLD therapeutic through mTOR suppression, which holds translational promise.


Subject(s)
Mannose , Network Pharmacology , Non-alcoholic Fatty Liver Disease , TOR Serine-Threonine Kinases , Animals , Mannose/pharmacology , Mannose/metabolism , TOR Serine-Threonine Kinases/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Mice , Male , Molecular Docking Simulation , Mice, Inbred C57BL , Signal Transduction/drug effects , Liver/metabolism , Liver/drug effects
15.
Epigenomics ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38511238

ABSTRACT

Aim: The present study was designed to investigate the coregulatory effects of multiple histone modifications (HMs) on gene expression in lung adenocarcinoma (LUAD). Materials & methods: Ten histones for LUAD were analyzed using ChIP-seq and RNA-seq data. An innovative computational method is proposed to quantify the coregulatory effects of multiple HMs on gene expression to identify strong coregulatory genes and regions. This method was applied to explore the coregulatory mechanisms of key ferroptosis-related genes in LUAD. Results: Nine strong coregulatory regions were identified for six ferroptosis-related genes with diverse coregulatory patterns (CA9, PGD, CDKN2A, PML, OTUB1 and NFE2L2). Conclusion: This quantitative method could be used to identify important HM coregulatory genes and regions that may be epigenetic regulatory targets in cancers.

17.
Int Heart J ; 65(2): 173-179, 2024.
Article in English | MEDLINE | ID: mdl-38556328

ABSTRACT

Keshan disease (KD) is a type of endemic cardiomyopathy with an unknown cause. It is primarily found in areas in China with low selenium levels, from northeast to southwest. The nutritional biogeochemical etiology hypothesis suggests that selenium deficiency is a major factor in KD development. Selenium is important in removing free radicals and protecting cells and tissues from peroxide-induced damage. Thus, low environmental selenium may affect the selenium level within the human body, and selenium level differences are commonly observed between healthy people in KD and nonKD areas. From the 1970s to the 1990s, China successfully reduced KD incidence in endemic KD areas through a selenium supplementation program. After years of implementing prevention and control measures, the selenium level of the population in the KD areas has gradually increased, and the prevalence of KD in China has remained low and stable in recent years. Currently, the pathogenesis of KD remains vague, and the effect of selenium supplementation on the prognosis of KD still needs further study. This paper comprehensively reviews selenium deficiency and its connection to KD. Thus, this study aims to offer novel ideas and directions to effectively prevent and treat KD in light of the current situation.


Subject(s)
Cardiomyopathies , Enterovirus Infections , Malnutrition , Selenium , Humans , Selenium/analysis , Cardiomyopathies/epidemiology , Cardiomyopathies/etiology , Cardiomyopathies/prevention & control , Enterovirus Infections/complications , Enterovirus Infections/epidemiology , Enterovirus Infections/prevention & control , China/epidemiology
18.
J Oleo Sci ; 73(3): 351-358, 2024.
Article in English | MEDLINE | ID: mdl-38432999

ABSTRACT

Acute pancreatitis (AP) have been documented to have severe impact on pancreatic function. Frequent incidence of AP can result in chronic pancreatitis and thereby it can increase the probability of pancreatic cancers. This study intended to examine the effect of selenium nanoparticles (Se-NPs) synthesized from Coleus forskohlii leaf extract on pancreatic function and AP in rat. Primarily, Se-NPs was fabricated using the C. forskohlii leaf extract. The synthesized nanomaterial was characterized through UV-visible, XRD, and FTIR spectroscopies. Notably, the zeta potential of Se-NPs was found to be -32.8 mV with a polydispersity index (PDI) of 0.18. Morphological analysis on SEM unveiled the spherical shape of Se-NP with an average particle size of 12.69 nm. Strikingly, cytotoxicity analysis on pancreatic cancer and normal cells unveiled the concentration-dependent toxicity profile. However, IC 50 value is lower in normal pancreatic cell lines in comparison to pancreatic cancer cells lines. Assessment of Se-NPs on AP rats revealed the positive impact of Se-NPs. It effectively decreased the amount of lipase, amylase, IL-1ß, MDA, NO, and Bcl-2 while increased the glucose, insulin, HOMA-ß and antioxidant potential in AP rats. In addition, an evaluation of Se-NPs in the pancreatic functions revealed the non-harmful effect of Se-NPs.


Subject(s)
Nanoparticles , Pancreatic Neoplasms , Pancreatitis , Plectranthus , Selenium , Animals , Rats , Pancreatitis/chemically induced , Pancreatitis/drug therapy , Acute Disease , Plant Extracts
19.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(1): 11-18, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38433625

ABSTRACT

Objective To investigate the effect of staphylococcal nuclease and tudor domain containing 1(SND1) on the biological function of osteosarcoma cells and decipher the mechanism of SND1 in regulating ferroptosis in osteosarcoma cells via SLC7A11. Methods Human osteoblasts hFOB1.19 and osteosarcoma cell lines Saos-2,U2OS,HOS,and 143B were cultured,in which the expression level of SND1 was determined.Small interfering RNA was employed to knock down the expression of SND1(si-SND1) in the osteosarcoma cell line HOS and 143B.The CCK8 assay kit,colony formation assay,and Transwell assay were employed to examine the effect of SND1 expression on the biological function of osteosarcoma cells.Furthermore,we altered the expression of SND1 and SLC7A11 in osteosarcoma cells to investigate the effect of SND1 on osteosarcoma ferroptosis via SLC7A11. Results The mRNA and protein levels of SND1 in Saos-2,U2OS,HOS,and 143B cells were higher than those in hFOB1.19 cells(all P<0.01).Compared with the control group,transfection with si-SND1 down-regulated the expression level of SND1 in HOS and 143B cells(all P<0.01),decreased the viability of HOS and 143B cells,reduced the number of colony formation,and inhibited cell invasion and migration(all P<0.001).The ferroptosis inducer Erastin promoted the apoptosis of HOS and 143B cells,while the ferroptosis inhibitor Ferrostatin-1 improved the viability of HOS and 143B cells(all P<0.001).After SND-1 knockdown,Erastin reduced the viability of HOS and 143B cells,while Ferrostatin-1 restored the cell viability(all P<0.001).After treatment with Erastin in the si-SND1 group,the levels of iron and malondialdehyde were elevated,and the level of glutathione was lowered(all P<0.001).The results of in vivo experiments showed that SND1 knockdown inhibited the mass of the transplanted tumor in 143B tumor-bearing nude mice(P<0.001).Knocking down the expression of SND1 resulted in down-regulated SLC7A11 expression(all P<0.001) and increased ferroptosis in HOS and 143B cells(P<0.001,P=0.020). Conclusions SND1 presents up-regulated expression in osteosarcoma cells.It may inhibit ferroptosis by up-regulating the expression of SLC7A11,thereby improving the viability of osteosarcoma cells.


Subject(s)
Bone Neoplasms , Cyclohexylamines , Elliptocytosis, Hereditary , Ferroptosis , Osteosarcoma , Phenylenediamines , Animals , Humans , Mice , Amino Acid Transport System y+ , Endonucleases , Mice, Nude , Micrococcal Nuclease , Tudor Domain
20.
Diabetol Metab Syndr ; 16(1): 57, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429774

ABSTRACT

PURPOSE: To evaluate the effect of intrahepatic cholestasis of pregnancy (ICP) with gestational diabetes mellitus (GDM) on perinatal outcomes and establish a prediction model of adverse perinatal outcomes in women with ICP. METHODS: This multicenter retrospective cohort study included the clinical data of 2,178 pregnant women with ICP, including 1,788 women with ICP and 390 co-occurrence ICP and GDM. The data of all subjects were collected from hospital electronic medical records. Univariate and multivariate logistic regression analysis were used to compare the incidence of perinatal outcomes between ICP with GDM group and ICP alone group. RESULTS: Baseline characteristics of the population revealed that maternal age (p < 0.001), pregestational weight (p = 0.01), pre-pregnancy BMI (p < 0.001), gestational weight gain (p < 0.001), assisted reproductive technology (ART) (p < 0.001), and total bile acid concentration (p = 0.024) may be risk factors for ICP with GDM. Furthermore, ICP with GDM demonstrated a higher association with both polyhydramnios (OR 2.66) and preterm labor (OR 1.67) compared to ICP alone. Further subgroup analysis based on the severity of ICP showed that elevated total bile acid concentrations were closely associated with an increased risk of preterm labour, meconium-stained amniotic fluid, and low birth weight in both ICP alone and ICP with GDM groups. ICP with GDM further worsened these outcomes, especially in women with severe ICP. The nomogram prediction model effectively predicted the occurrence of preterm labour in the ICP population. CONCLUSIONS: ICP with GDM may result in more adverse pregnancy outcomes, which are associated with bile acid concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL
...