Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Aquat Toxicol ; 255: 106380, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36592562

ABSTRACT

The versatile applicability of rare earth elements (REEs) especially lanthanum (La) in diverse fields, has led to large-scale mineral exploitation globally, inevitably resulting in substantial release of La into environment. As emerging anthropogenic environmental contaminant, La-induced toxicological effects and potential ecotoxicological implications in relation to realistic levels of La in aquatic ecosystems are becoming major concerns. To address these issues, Daphnia magna was selected as a prototype, and toxicity tests were conducted to explore the effects of La exposure on life-history characteristics and fecundity fitness, as showcased by quantitative variations from the individual level to population scale. In parallel, to further denote transgenerational caloric impacts of parental La exposure, bioenergetic profiles on newborn neonates were concurrently determined by measuring macromolecule forms in terms of proteins, glycogens and lipids to quantify nutritional alterations at progeny level. The results revealed that low-dose La exposure slightly stimulated the demographic potential and nutritional responses, exhibiting dose-dependent hormesis-like effects and promising non-toxicological potential to Daphnia, whereas high-dose La exposure of greater than 59.2 µg La L - 1, conspicuously imposed detrimental effects on quantity and quality of offspring, i.e. not only reducing body size, lifespan expectancy and reproductive output in a concentration-dependent way and resulting in lower population fitness by a dynamic life-table analysis, but eventually leading to the decrease of nutritional qualities and caloric contents on neonates. Taken together, these two-phase findings regarding the dose-related shift from hormesis to inhibition not only provided valuable insights into the complicated biological outcomes of La effects on environmentally-relevant organisms, but experimentally highlighted the significant implications of considering environmental and nutritional consequences in ecologically assessing the La-triggered risk at environmentally realistic occurrences, particularly on gradient scenarios crossing upstream and downstream of highly complex mining watersheds.


Subject(s)
Lanthanum , Water Pollutants, Chemical , Animals , Lanthanum/toxicity , Daphnia , Ecosystem , Water Pollutants, Chemical/toxicity , Reproduction , Energy Metabolism
2.
Sci Total Environ ; 803: 150090, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34525724

ABSTRACT

The increasing global demand for rare earth elements (REEs) has led to their recognition as emerging contaminants; however, the effect that biota have on the cycling of these elements at the watershed scale is not currently well understood. In this study, water samples and field freshwater clams Corbicula fluminea were concurrently collected along watershed gradients, and concentration profiles of 14 naturally occurring REEs were measured in operationally defined water fractions and soft tissues of the freshwater clams. Moreover, Post Archean Australian Shale (PAAS) normalized REE patterns, fractionation indices, and anomalous values were determined to further extract characteristic features. As a result, both the water and biological samples had variable REE compositions, with higher concentrations of light REEs (LREEs) than middle REEs (MREEs) and heavy REEs (HREEs), while decreasing concentrations were generally observed as filter pore size decreased, implying that large colloidal and particulate fractions were important carriers of REEs. The spatial distribution patterns of REEs revealed a clear site effect among profiles, with variability more pronounced among watersheds and with peaks in sites from a small watershed near the hotspots of the mining area, and then exhibited a decreasing trend with distance from there. Meanwhile, significant bioaccumulation of REEs was observed potentially reflecting different degrees of contamination gradients among the watersheds. The PAAS-normalized distribution patterns tended to be slightly enriched in MREEs, producing a peculiar "roof-shaped" feature and characteristic fractionation. Remarkably, bio-concentration factors (BCFs) highlighted the importance of large colloidal and particulate phases in assessing biologically available REEs for filter-feeding species. Collectively, our study strongly favored that accumulation patterns and fractionation characteristics of REEs in C. fluminea can serve as a reliable indicator of geochemical behavior, providing a promising biomonitoring tool to quantitatively denote different degrees of REE contamination and assess possible impacts in mining watersheds.


Subject(s)
Corbicula , Metals, Rare Earth , Water Pollutants, Chemical , Animals , Australia , Environmental Monitoring , Metals, Rare Earth/analysis , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...