Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 597
Filter
1.
J Asian Nat Prod Res ; : 1-9, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900048

ABSTRACT

A new coumarin (1) and a new flavonoid (2) were isolated from the air-dried flower buds of Ochrocarpus longifolius, together with ten known compounds (3-12). The structures of two new compounds were established by 1D and 2D NMR and MS data. In addition, the new compound 2 showed significant proliferation inhibitory activity on Eca-109 and MGC-803 cells. The results of this study may enrich the diversity of compounds from O. longifolius and provide a basis for further research on its natural products and pharmacological activities.

2.
Ren Fail ; 46(1): 2347462, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38832497

ABSTRACT

Diabetic nephropathy (DN) is one of the most serious and frequent complications among diabetes patients and presently constitutes vast the cases of end-stage renal disease worldwide. Tubulointerstitial fibrosis is a crucial factor related to the occurrence and progression of DN. Oridonin (Ori) is a diterpenoid derived from rubescens that has diverse pharmacological properties. Our previous study showed that Ori can protect against DN by decreasing the inflammatory response. However, whether Ori can alleviate renal fibrosis in DN remains unknown. Here, we investigated the mechanism through which Ori affects the Wnt/ß-catenin signaling pathway in diabetic rats and human proximal tubular epithelial cells (HK-2) exposed to high glucose (HG) levels. Our results revealed that Ori treatment markedly decreased urinary protein excretion levels, improved renal function and alleviated renal fibrosis in diabetic rats. In vitro, HG treatment increased the migration of HK-2 cells while reducing their viability and proliferation rate, and treatment with Ori reversed these changes. Additionally, the knockdown of ß-catenin arrested cell migration and reduced the expression levels of Wnt/ß-catenin signaling-related molecules (Wnt4, p-GSK3ß and ß-catenin) and fibrosis-related molecules (α-smooth muscle actin, collagen I and fibronectin), and Ori treatment exerted an effect similar to that observed after the knockdown of ß-catenin. Furthermore, the combination of Ori treatment and ß-catenin downregulation exerted more pronounced biological effects than treatment alone. These findings may provide the first line of evidence showing that Ori alleviates fibrosis in DN by inhibiting the Wnt/ß-catenin signaling pathway and thereby reveal a novel therapeutic avenue for treating tubulointerstitial fibrosis.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Diterpenes, Kaurane , Fibrosis , Rats, Sprague-Dawley , Wnt Signaling Pathway , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/etiology , Wnt Signaling Pathway/drug effects , Animals , Diterpenes, Kaurane/pharmacology , Diterpenes, Kaurane/therapeutic use , Rats , Fibrosis/drug therapy , Humans , Male , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Cell Line , beta Catenin/metabolism , Cell Movement/drug effects , Kidney/pathology , Kidney/drug effects , Cell Proliferation/drug effects , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/metabolism
3.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2828-2840, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812182

ABSTRACT

The food security of China as a big agricultural country is attracting increasing attention. With the progress in the traditional Chinese medicine industry, Chinese medicinal materials and their preparations have been gradually developed as agents for disease prevention and with antimicrobial and insecticidal functions in agriculture. Promoting pesticide innovation by interdisciplinary integration has become the trend in pesticide research globally. Considering the increasingly important roles of green pesticides from traditional Chinese medicines and artificial intelligence in pest target prediction, this paper proposed an innovative green control strategy in line with the concepts of ecological sustainable development and food security protection. CiteSpace was used for visual analysis of the publications. The results showed that artificial intelligence had been extensively applied in the pesticide field in recent years. This paper explores the application and development of biopesticides for the first time, with focus on the plant-derived pesticides. The thought of traditional Chinese medicine compatibility can be employed to creat a new promosing field: pesticides from traditional Chinese medicine. Moreover, artificial intelligence can be employed to build the formulation system of pesticides from traditional Chinese medicines and the target prediction system of diseases and pests. This study provides new ideas for the future development and market application of biopesticides, aiming to provide more healthy and safe agricultural products for human beings, promote the innovation and development of green pesticides in China, and protect the sustainable development of the environment and ecosystem. This may be the research hotspot and competition point for the green development of the pesticide industry chain in the future.


Subject(s)
Artificial Intelligence , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Pesticides , Pesticides/chemistry , Drugs, Chinese Herbal/chemistry , Animals , Green Chemistry Technology/methods , Humans
4.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1882-1887, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812200

ABSTRACT

Chemical constituents from the ethanol extract of Picrorhiza scrophulariiflora were isolated and purified by column chromatography. Their structures were identified by HR-MS, 1D and 2D-NMR, and their cytotoxicity was assessed by CCK-8 assay. Four compounds were isolated and identified as follows: 2ß-D-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosterol-5,25-diene-22-one(1), 2ß-D-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosta-5,24-diene-22-one(2), 25-acetoxy-2ß-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosta-5-ene-22-one(3) and 25-acetoxy-2ß-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosta-5,23-(E)-diene-22-one(4). Compound 1 represents a new cucurbitane glycoside. The half inhibitory concentrations of the 4 compounds exceeded 100 µmol·L~(-1) against four tumor cell lines, indicating no significant cytotoxicity.


Subject(s)
Glycosides , Picrorhiza , Glycosides/chemistry , Glycosides/isolation & purification , Humans , Cell Line, Tumor , Picrorhiza/chemistry , Molecular Structure , Magnetic Resonance Spectroscopy , Drugs, Chinese Herbal/chemistry , Triterpenes
5.
Small ; : e2312141, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801318

ABSTRACT

Reactive oxygen species (ROS)-mediated emerging treatments exhibit unique advantages in cancer therapy in recent years. While the efficacy of ROS-involved tumor therapy is greatly restricted by complex tumor microenvironment (TME). Herein, a dual-metal CaO2@CDs-Fe (CCF) nanosphere, with TME response and regulation capabilities, are proposed to improve ROS lethal power by a multiple cascade synergistic therapeutic strategy with domino effect. In response to weak acidic TME, CCF will decompose, accompanied with intracellular Ca2+ upregulated and abundant H2O2 and O2 produced to reverse antitherapeutic TME. Then the exposed CF cores can act as both Fenton agent and sonosensitizer to generate excessive ROS in the regulated TME for enhanced synergistic CDT/SDT. In combination with calcium overloading, the augmented ROS induced oxidative stress will cause more severe mitochondrial damage and cellular apoptosis. Furthermore, CCF can also reduce GPX4 expression and enlarge the lipid peroxidation, causing ferroptosis and apoptosis in parallel. These signals of damage will finally initiate damage-associated molecular patterns to activate immune response and to realize excellent antitumor effect. This outstanding domino ROS/calcium loading synergistic effect endows CCF with excellent anticancer effect to efficiently eliminate tumor by apoptosis/ferroptosis/ICD both in vitro and in vivo.

6.
Technol Health Care ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38820029

ABSTRACT

BACKGROUND: The substitution of missing teeth with implants is a dependable and anticipated therapeutic approach. Despite numerous studies affirming long-term success rates, there exists a spectrum of potential biological and aesthetic complications. OBJECTIVE: The primary objective of this study was to assess patient responses subsequent to surgical interventions, with a specific emphasis on the utilization of xenogenic collagen matrix (XCM), both with and without the application of a stent secured over healing abutments, in the context of keratinized gingival mucosa augmentation. The principal aim was to evaluate and draw comparisons between the clinical outcomes resulting from these two procedural approaches, with a particular focus on critical parameters encompassing post-operative complications, patient comfort, and the overall efficacy in achieving successful keratinized tissue augmentation. methods: Sixty patients were selected for this study. The patients were divided into three groups: A, B, and a control group, with each group comprising 20 participants. We used XCM in experimental group A, XCM covered with surgical stent in experimental group B, and free gingival graft (FGG) in the control group. After the surgical procedure, patients were required to complete a visual analogue scale (VAS) questionnaire for post-operative complications, and a quality of life (QOL) questionnaire on days 1, 3, and 7. RESULTS: Patients in the experimental groups A and B demonstrated markedly improved outcomes when compared with the control group. Assessments conducted on days 1, 3, and 7 demonstrated diminished levels of pain, bleeding, and swelling in both experimental groups, with experimental group B showing the least discomfort. The incorporation of XCM, either with or without stents, was associated with a reduction in analgesic consumption, underscoring its favorable influence on post-operative comfort, notwithstanding the exception of halitosis in experimental group B. CONCLUSION: Using XCM with or without a stent for keratinized tissue augmentation has better post-operative outcomes associated with reduced swelling, bleeding, and pain based on the QOL survey. This study provides data to support the clinical application of XCM and stents.

7.
Heliyon ; 10(10): e30910, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38778933

ABSTRACT

According to the Standard of Chinese Medicinal Materials of Shaanxi Province (2015 edition), Salvia miltiorrhiza caulis et folium is the dried stems and leaves of Salvia miltiorrhiza, which could activate blood and dispell blood stasis, clear the mind and remove annoyance. In this study, the dynamic absorption changes of phenolic acids (FS) and phenolic acids-flavonoids (FT) in rats after oral administration were studied by UPLC-TQ/MS/MS, to elucidate the pharmacokinetics of seven major bioactive components of the stem-leaf of Salvia miltiorrhiza in vivo. The results showed that the pharmacokinetic parameters of FS and FT were significantly different in normal rats and model rats. Compared with the control group, after injecting 10 % polymer dextran 500 into the tail vein to establish a model of microcirculation disturbance, the Cmax of caffeic acid decreased. The Cmax of rosmarinic acid and lithospermic acid increased. Danshensu showed a decrease in CLz/F, accompanied by an increase in both AUC0-t and AUC0-∞. The AUC0-t of lithospermic acid was also increased. These results indicated that microcirculation disturbance could decrease the absorption of caffeic acid while increasing the absorption of danshensu, rosmarinic acid and lithospermic acid. After oral administration of FT, the Cmax of danshensu and the AUC0-t of caffeic acid were increased significantly, suggesting that the presence of flavonoids may promote the absorption and exposure of phenolic acids in vivo. This study provides a reference for the elucidation of the in vivo substances and the mechanisms of action of FS and FT from the stem-leaf of Salvia miltiorrhiza.

8.
Phytomedicine ; 128: 155385, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569292

ABSTRACT

BACKGROUND: Xianlian Jiedu Decoction (XLJDD) has been used for the treatment of colorectal cancer (CRC) for several decades because of the prominent efficacy of the prescription. Despite the clear clinical efficacy of XLJDD, the anti-CRC mechanism of action is still unclear. PURPOSE: The inhibitory effect and mechanism of XLJDD on CRC were investigated in the azoxymethane/dextran sulfate sodium (AOM/DSS)-induced mice. METHODS: The AOM/DSS-induced mice model was adopted to evaluate the efficacy after administering the different doses of XLJDD. The therapeutic effects of XLJDD in treating AOM/DSS-induced CRC were investigated through histopathology, immunofluorescence and ELISA analysis methods. In addition, metabolomics profile and 16S rRNA analysis were used to explore the effective mechanisms of XLJDD on CRC. RESULTS: The results stated that the XLJDD reduced the number of tumor growth on the inner wall of the colon and the colorectal weight/length ratio, and suppressed the disease activity index (DAI) score, meanwhile XLJDD also increased body weight, colorectal length, and overall survival rate. The treatment of XLJDD also exhibited the ability to lower the level of inflammatory cytokines in serum and reduce the expression levels of ß-catenin, COX-2, and iNOS protein in colorectal tissue. The findings suggested that XLJDD has anti-inflammatory properties and may provide relief for those suffering from inflammation-related conditions. Mechanistically, XLJDD improved gut microbiota dysbiosis and associated metabolic levels of short chain fatty acids (SCFAs), sphingolipid, and glycerophospholipid. This was achieved by reducing the abundance of Turicibacter, Clostridium_sensu_stricto_1, and the levels of sphinganine, LPCs, and PCs. Additionally, XLJDD increased the abundance of Enterorhabdus and Alistipes probiotics, as well as the content of butyric acid and isovaleric acid. CONCLUSION: The data presented in this article demonstrated that XLJDD can effectively inhibit the occurrence of colon inner wall tumors by reducing the level of inflammation and alleviating intestinal microbial flora imbalance and metabolic disorders. It provides a scientific basis for clinical prevention and treatment of CRC.


Subject(s)
Azoxymethane , Colorectal Neoplasms , Dextran Sulfate , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/drug effects , Drugs, Chinese Herbal/pharmacology , Colorectal Neoplasms/drug therapy , Mice , Male , Disease Models, Animal , Metabolome/drug effects , Colon/drug effects , Colon/pathology , Colon/microbiology
9.
Huan Jing Ke Xue ; 45(5): 2622-2630, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38629526

ABSTRACT

A typical particulate matter pollution process occurred from October 9 to 17,2018,in Langfang,and 99 types of volatile organic compounds (VOCs) were monitored by using ZF-KU-1007. The characteristics of VOCs,formation potential of secondary organic aerosol (SOA),and source of VOCs were systematically analyzed. The results showed that the maximum concentration of PM2.5 was 198 µg·m-3 during the pollution process and was 2.64 times the National Ambient Air Quality Standard (GB 3095-2012). The average concentration of VOCs was 56.8×10-9,127.8×10-9,and 72.5×10-9 in the early,middle,and late stages of the pollution process,respectively,and the concentration of VOCs increased significantly in the middle stage. The formation potential of SOA was significantly positively correlated with PM2.5,and the contribution of aromatic hydrocarbon for SOA was larger and significantly correlated with the concentration of PM2.5. In the middle pollution stage,SOA increased,and the contribution ratio of aromatic hydrocarbon increased significantly. Conversely,the contribution of alkanes and olefin decreased significantly,which showed that aromatic hydrocarbons,namely benzene series,were the dominant species of SOA generation and had a great influence on the pollution process. Benzene,toluene,m-/p-xylene,o-xylene,and ethylbenzene and nonane,n-undecane,and methylcyclohexane were the priority control species in this pollution process. Solvent use source and motor vehicle emission source (gasoline and diesel vehicles) were the main sources affecting the concentration of VOCs during the autumn pollution process of Langfang,among which the contribution of gasoline vehicle emissions increased significantly in the middle pollution contribution and was the key control source.

10.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38396774

ABSTRACT

Platelets assume a pivotal role in the pathogenesis of cardiovascular diseases (CVDs), emphasizing their significance in disease progression. Consequently, addressing CVDs necessitates a targeted approach focused on mitigating platelet activation. Eugenol, predominantly derived from clove oil, is recognized for its antibacterial, anticancer, and anti-inflammatory properties, rendering it a valuable medicinal agent. This investigation delves into the intricate mechanisms through which eugenol influences human platelets. At a low concentration of 2 µM, eugenol demonstrates inhibition of collagen and arachidonic acid (AA)-induced platelet aggregation. Notably, thrombin and U46619 remain unaffected by eugenol. Its modulatory effects extend to ATP release, P-selectin expression, and intracellular calcium levels ([Ca2+]i). Eugenol significantly inhibits various signaling cascades, including phospholipase Cγ2 (PLCγ2)/protein kinase C (PKC), phosphoinositide 3-kinase/Akt/glycogen synthase kinase-3ß, mitogen-activated protein kinases, and cytosolic phospholipase A2 (cPLA2)/thromboxane A2 (TxA2) formation induced by collagen. Eugenol selectively inhibited cPLA2/TxA2 phosphorylation induced by AA, not affecting p38 MAPK. In ADP-treated mice, eugenol reduced occluded lung vessels by platelet thrombi without extending bleeding time. In conclusion, eugenol exerts a potent inhibitory effect on platelet activation, achieved through the inhibition of the PLCγ2-PKC and cPLA2-TxA2 cascade, consequently suppressing platelet aggregation. These findings underscore the potential therapeutic applications of eugenol in CVDs.


Subject(s)
Eugenol , Pulmonary Embolism , Humans , Mice , Animals , Eugenol/pharmacology , Eugenol/therapeutic use , Eugenol/metabolism , Phospholipase C gamma/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Disease Models, Animal , Platelet Activation , Platelet Aggregation , Blood Platelets/metabolism , Phosphorylation , Protein Kinase C/metabolism , Thromboxane A2/metabolism , Collagen/metabolism , Pulmonary Embolism/drug therapy , Pulmonary Embolism/metabolism , Phospholipases A2, Cytosolic/metabolism
11.
J Cell Mol Med ; 28(4): e18139, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38334198

ABSTRACT

Platelets assume a pivotal role in the cardiovascular diseases (CVDs). Thus, targeting platelet activation is imperative for mitigating CVDs. Ginkgetin (GK), from Ginkgo biloba L, renowned for its anticancer and neuroprotective properties, remains unexplored concerning its impact on platelet activation, particularly in humans. In this investigation, we delved into the intricate mechanisms through which GK influences human platelets. At low concentrations (0.5-1 µM), GK exhibited robust inhibition of collagen and arachidonic acid (AA)-induced platelet aggregation. Intriguingly, thrombin and U46619 remained impervious to GK's influence. GK's modulatory effect extended to ATP release, P-selectin expression, intracellular calcium ([Ca2+ ]i) levels and thromboxane A2 formation. It significantly curtailed the activation of various signaling cascades, encompassing phospholipase Cγ2 (PLCγ2)/protein kinase C (PKC), phosphoinositide 3-kinase/Akt/glycogen synthase kinase-3ß and mitogen-activated protein kinases. GK's antiplatelet effect was not reversed by SQ22536 (an adenylate cyclase inhibitor) or ODQ (a guanylate cyclase inhibitor), and GK had no effect on the phosphorylation of vasodilator-stimulated phosphoproteinSer157 or Ser239 . Moreover, neither cyclic AMP nor cyclic GMP levels were significantly increased after GK treatment. In mouse studies, GK notably extended occlusion time in mesenteric vessels, while sparing bleeding time. In conclusion, GK's profound impact on platelet activation, achieved through inhibiting PLCγ2-PKC cascade, culminates in the suppression of downstream signaling and, ultimately, the inhibition of platelet aggregation. These findings underscore the promising therapeutic potential of GK in the CVDs.


Subject(s)
Biflavonoids , Nucleotides, Cyclic , Phospholipases , Humans , Animals , Mice , Nucleotides, Cyclic/metabolism , Nucleotides, Cyclic/pharmacology , Phospholipase C gamma/metabolism , Arachidonic Acid/pharmacology , Arachidonic Acid/metabolism , Phospholipases/metabolism , Phospholipases/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Platelet Aggregation Inhibitors/pharmacology , Platelet Activation , Blood Platelets/metabolism , Platelet Aggregation , Protein Kinase C/metabolism , Phosphorylation , Collagen/metabolism
12.
ACS Nano ; 18(11): 7769-7795, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38420949

ABSTRACT

Tumor-associated macrophages (TAMs) play pivotal roles in tumor development. As primary contents of tumor environment (TME), TAMs secrete inflammation-related substances to regulate tumoral occurrence and development. There are two kinds of TAMs: the tumoricidal M1-like TAMs and protumoral M2-like TAMs. Reprogramming TAMs from immunosuppressive M2 to immunocompetent M1 phenotype is considered a feasible way to improve immunotherapeutic efficiency. Notably, nanomaterials show great potential for biomedical fields due to their controllable structures and properties. There are many types of nanomaterials that exhibit great regulatory activities for TAMs' reprogramming. In this review, the recent progress of nanomaterials-involved TAMs' reprogramming is comprehensively discussed. The various nanomaterials for TAMs' reprogramming and the reprogramming strategies are summarized and introduced. Additionally, the challenges and perspectives of TAMs' reprogramming for efficient therapy are discussed, aiming to provide inspiration for TAMs' regulator design and promote the development of TAMs-mediated immunotherapy.


Subject(s)
Nanostructures , Neoplasms , Humans , Tumor-Associated Macrophages , Immunotherapy , Immunosuppressive Agents , Inflammation , Nanostructures/therapeutic use , Tumor Microenvironment , Neoplasms/therapy
13.
Small ; : e2400254, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38402432

ABSTRACT

Pyroptosis, a new mode of regulatory cell death, holds a promising prospect in tumor therapy. The occurrence of pyroptosis can trigger the release of damage-associated molecular patterns (DAMPs) and activate the antitumor immune response. Moreover, enhancing intracellular reactive oxygen species (ROS) generation can effectively induce pyroptosis. Herein, an integrated nanoplatform (hCZAG) based on zeolitic imidazolate framework-8 (ZIF-8) with Cu2+ and Zn2+ as active nodes and glucose oxidase (GOx) loading is constructed to evoke pyroptosis. GOx can effectively elevate intracellular hydrogen peroxide (H2 O2 ) levels to regulate the unfavorable tumor microenvironment (TME). Cu2+ can be reduced to Cu+ by endogenous overexpressed GSH and both Cu2+ and Cu+ can exert Fenton-like activity to promote ROS generation and amplify oxidative stress. In addition, the accumulation of Cu2+ leads to the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT), thus resulting in cuproptosis. Notably, the outburst of ROS induced by hCZAG activates Caspase-1 proteins, leads to the cleavage of gasdermin D (GSDMD), and induces pyroptosis. Pyroptosis further elicits an adaptive immune response, leading to immunogenic cell death (ICD). This study provides effective strategies for triggering pyroptosis-mediated immunotherapy and achieving improved therapeutic effects.

14.
Int J Biol Macromol ; 258(Pt 2): 129120, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171436

ABSTRACT

Ultrasound (US)-mediated sonodynamic therapy (SDT) has received extensive attention in pathogen elimination for non-invasiveness and high spatial and temporal accuracy. Considering that hydrogel can provide a healing-friendly environment for wounds, in this work, hybrid hydrogels are constructed by embedding Ag doped TiO2 nanoparticles in chitosan-polyvinyl alcohol hydrogels for enhanced sonodynamic antibacterial therapy. With metal silver doped, TiO2 nanoparticles sonosensitivity is improved to generate more reactive oxygen species (ROS), which endows hybrid hydrogels with high-efficient antibacterial properties. In vivo results show that hybrid hydrogel dressing can prevent infection and promote wound closure within 2 days. The healing ratio excess 95 % with no pus produced at the end of treatment. The therapeutic mechanism was identified that heterojunction formed in Ag doped TiO2 facilitates the separation of charge carriers under US irradiation, leading to elevating ROS generation. The generated ROS promote hybrid hydrogels sonodynamic antibacterial therapeutic efficacy to thoroughly eliminate pathogen via disrupting bacterial cell membrane integrity, decreasing membrane fluidity and increasing membrane permeability. Besides, biofilm formation could be effectively inhibited. This work developed a hybrid hydrogel with amplified SDT effect for wound healing, which is expected to provide inspiration of hybrid hydrogels design and Ti-based nanomaterials sonosensitivity enhancement.


Subject(s)
Chitosan , Staphylococcal Infections , Humans , Chitosan/pharmacology , Staphylococcus aureus , Polyvinyl Alcohol/pharmacology , Reactive Oxygen Species/pharmacology , Titanium/pharmacology , Anti-Bacterial Agents/pharmacology , Bandages , Hydrogels/pharmacology , Staphylococcal Infections/drug therapy
15.
J Ethnopharmacol ; 319(Pt 3): 117356, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37890803

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetic nephropathy (DN) is one of the most common and serious complications of diabetes, which lacks effective treatment. Salviae Miltiorrhizae Radix Et Rhizoma is one of the key compatible traditional Chinese medicine in the prescription for the treatment of DN. Salvianolic acid B and tanshinone IIA are two monomer active components with high content and clear structure in Salvia miltiorrhiza, which can effectively improve early (DN), respectively. AIM OF THE STUDY: To evaluate the compatible effect of salvianolic acid B and tanshinone IIA on early DN rats and elucidate the mechanism. METHODS: Early DN rats were induced by streptozotocin combined with high glucose and high fat diet, and intervened by salvianolic acid B, tanshinone IIA and their combinations. The pathological sections of kidney, liver and biochemical indexes were analyzed. Network pharmacology method was used to predict the possible mechanism. The mechanisms were elucidated by metabolomics, Elisa, and Western blot. RESULTS: Given our analysis, salvianolic acid B and tanshinone IIA can synergistically regulate 24 h UTP, Urea and Scr and improve kidney damage in early DN rats. The metabolic abnormalities of early DN rats were improved by regulating the biosynthesis of saturated fatty acids, glycerol phospholipid metabolism, steroid biosynthesis, alanine, and arachidonic acid. Salvianolic acid B combined with tanshinone IIA at a mass ratio of 13.4:1 can significantly reduce kidney inflammation, up-regulate p-PI3K/PI3K and p-Akt/Akt and down-regulate p-NF-κB/NF-κB, which better than the single-used group and can be reversed by PI3K inhibitor LY294002. CONCLUSION: Salvianolic acid B and tanshinone IIA can synergistically improve glucose and lipid disorders, liver and kidney damage, and resist kidney inflammation in early DN rats, and the mechanism may be related to regulating PI3K/Akt/NF-κB signaling pathway.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Nephritis , Animals , Rats , NF-kappa B , Diabetic Nephropathies/drug therapy , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Glucose , Inflammation
16.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5142-5151, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114104

ABSTRACT

In recent years, the traditional Chinese medicine(TCM)industry has experienced rapid development, resulting in a significant amount of Chinese medicinal residues generated during the industrial manufacturing process. Currently, the main methods of handling Chinese medicinal residues include stacking, landfilling, and incineration, which lead to substantial resource waste and potential environmental pollution. With "carbon peak" and "carbon neutrality"( "Dual Carbon")becoming national strategic goals, the TCM industry is ushering in a new wave of "low-carbon" trends, and the high-value utilization of Chinese medicinal residues has become a breakthrough for implementing a low-carbon economy in the TCM sector. From the perspective of a low-carbon economy, this article reviewed literature in China and abroad to summarize the microbial transformation technology, enzymatic conversion technology, biomass pyrolysis, gasification, hydrothermal liquefaction, and other high-value utilization technologies for Chinese medicinal residues. It also overviewed the applications of Chinese medicinal residue in feed additives, organic fertilizers, edible mushroom cultivation substrates, preparation of activated carbon for wastewater treatment, and new energy batteries. Considering the current status of resource utilization of Chinese medicinal residues, feasible strategies and suggestions for resource development and utilization were proposed to improve the quality and efficiency of the Chinese medicinal resource industry chain and promote green development, thereby providing research ideas and theoretical basis for achieving carbon peak and carbon neutrality goals.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , China , Technology , Industry
17.
Med Int (Lond) ; 3(6): 58, 2023.
Article in English | MEDLINE | ID: mdl-37954521

ABSTRACT

The current strategies for the treatment of vitiligo using phototherapy usually involve treatment for two-three times per week; however, in practice, the number of patient sessions does not meet this standard. The present study found that phototherapy once a week was also effective. The present study was designed to examine the efficacy of weekly light therapy. For this purpose, 296 patients with vitiligo were included and divided into five sub-samples of the neck, face, trunk, extremities and scalp according to the site of phototherapy, and were treated once or twice weekly with phototherapy. The difference in efficacy between phototherapy performed once and twice weekly was observed using a Chi-squared test. It was concluded that there was a minimal difference between phototherapy performed twice weekly compared to once weekly for the treatment of vitiligo on the face, neck, torso, limbs and scalp. Thus, phototherapy once a week is valid for the treatment of vitiligo, although weekly light therapy takes longer to restore color for the first time.

18.
Folia Neuropathol ; 61(3): 266-272, 2023.
Article in English | MEDLINE | ID: mdl-37818687

ABSTRACT

INTRODUCTION: The contribution of brain abnormalities in patients with Parkinson's disease (PD) to impaired functional status remains uncertain. Our study assessed whether global and regional brain structural abnormalities are associated with impaired performance of activities of daily living (ADL) in PD patients. MATERIAL AND METHODS: A retrospective analysis was conducted of 46 patients with PD, recruited prospectively from a movement disorder clinic. Motor impairment and disability were assessed using the Hoehn and Yahr (H-Y) scale and Unified Parkinson's Disease Rating Scale Part III (UPDRS-III). Cognitive status was evaluated with Montreal Cognitive Assessment (MoCA). The performance of ADL was indexed by the sum score of the Physical Self-Maintenance Scale (PSMS) and Lawton Instrumental ADL scale. Brain magnetic resonance imaging (MRI) was performed to assess white matter hyperintensities and medial temporal lobe atrophy (MTLA). Global brain atrophy, indexed by the relative grey matter volume (RGM), relative white matter volume (RWM) and average cortical thickness of the whole brain, was quantified by voxel-based morphometry (VBM). RESULTS: The ADL score (where higher scores indicate poorer performance) negatively correlated with RWM (where greater volume indicates less severe atrophy; r = -0.41, p = 0.004) and RGM (where greater volume indicates less severe atrophy; r = -0.43, p = 0.003) but not with the average cortical thickness ( r = -0.16, p = 0.29). With ADL score as the dependent variable in a linear regression model, H-Y stage and RWM significantly correlated with the ADL score after adjusting for age and MoCA score, and together accounted for 51% of the variance therein. RGM was not significantly correlated with the ADL score after adjusting for age and MoCA score. CONCLUSIONS: Cerebral white matter atrophy may be associated with the performance of ADL in patients with PD, indicating an important role of white matter impairment in their functional status.


Subject(s)
Parkinson Disease , White Matter , Humans , Activities of Daily Living , Parkinson Disease/pathology , White Matter/pathology , Retrospective Studies , Magnetic Resonance Imaging/methods , Atrophy/complications , Atrophy/pathology , Gray Matter/pathology
19.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4545-4551, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37802795

ABSTRACT

It has become a common consensus that resource conservation and intensive recycling for improving resource utilization efficiency is an important way to achieve carbon peak and carbon neutrality(dual carbon). Traditonal Chinese medicine(TCM)resources as national strategic resources are the material basis and fundamental guarantee for the development of TCM industry and health services. However, the rapid growth of China's TCM industry and the continuous expansion and extension of the industrial chain have exposed the low efficiency of TCM resources. Resource waste and environmental pollution caused by the treatment and discharge of TCM waste have emerged as major problems faced by the development of the industry, which has aroused wide concern. Considering the dual carbon goals, this paper expounds the role and potential of TCM resource recycling and circular economy industry development. Taking the typical model of TCM resource recycling as the case of circular economy industry in reducing carbon source and increasing carbon sink, this paper puts forward the suggestions for the TCM circular economy industry serving the double carbon goals. The suggestions mainly include strengthening the policy and strategic leading role of the double carbon goals, building an objective evaluation system of low-carbon emission reduction in the whole industrial chain of TCM resources, building an industrial demonstration park for the recycling of TCM resources, and promoting the establishment of a circular economy system of the whole industrial chain of TCM resources. These measures are expected to guide the green transformation of TCM resource industry from linear economic model to circular economy model, provide support for improving the utilization efficiency and sustainable development of TCM resources, and facilitate the low-carbon and efficient development of TCM resource industry and the achievement of the double carbon goals.


Subject(s)
Equipment Reuse , Medicine, Chinese Traditional , Goals , Environmental Pollution , Economic Development , Carbon , China
20.
J Mater Chem B ; 11(38): 9128-9154, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37698045

ABSTRACT

Nanomaterial-based cancer therapy has recently emerged as a new therapeutic modality with the advantages of minimal invasiveness and negligible normal tissue toxicity over traditional cancer treatments. However, the complex microenvironment and self-protective mechanisms of tumors have suppressed the therapeutic effect of emerging antitumor modalities, which seriously hindered the transformation of these modalities to clinical settings. Due to the excellent biocompatibility, unique physicochemical properties and easy surface modification, carbon dots, as promising nanomaterials in the biomedical field, can effectively improve the therapeutic effect of emerging antitumor modalities as multifunctional nanoplatforms. In this review, the mechanism and limitations of emerging therapeutic modalities are described. Further, the recent advances related to carbon dot-based nanoplatforms in overcoming the therapeutic barriers of various emerging therapies are systematically summarized. Finally, the prospects and potential obstacles for the clinical translation of carbon dot-based nanoplatforms in tumor therapy are also discussed. This review is expected to provide a reference for nanomaterial design and its development for the efficacy enhancement of emerging therapeutic modalities.


Subject(s)
Nanoparticles , Nanostructures , Neoplasms , Humans , Carbon/chemistry , Nanostructures/chemistry , Theranostic Nanomedicine , Neoplasms/therapy , Nanoparticles/therapeutic use , Nanoparticles/chemistry , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...