Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Eye Res ; 245: 109974, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38897271

ABSTRACT

Various corneal diseases are strongly associated with corneal biomechanical characteristics, and early measurement of patients' corneal biomechanics can be utilized in their diagnosis and treatment. Measurement methods for corneal biomechanical characteristics are classified into ex vivo and in vivo. Some of these methods can directly measure certain corneal biomechanical parameters, while others require indirect calculation through alternative methods. However, due to diversities in measurement techniques and environmental conditions, significant differences may exist in the corneal mechanical properties measured by these two methods. Therefore, comprehensive research on current measurement methods and the exploration of novel measurement techniques may have great clinical significance. The corneal elastic modulus, a critical indicator in corneal biomechanics, reflects the cornea's ability to return to its initial shape after undergoing stress. This review aims to provide a comprehensive summary of the corneal elastic modulus, which is a critical biomechanical parameter, and discuss its direct, indirect, and potential measurement methods and clinical applications.


Subject(s)
Cornea , Elastic Modulus , Humans , Cornea/physiology , Biomechanical Phenomena/physiology , Corneal Diseases/physiopathology , Corneal Diseases/diagnosis
2.
Open Life Sci ; 16(1): 1240-1251, 2021.
Article in English | MEDLINE | ID: mdl-34901457

ABSTRACT

We intended to explore the potential molecular mechanisms underlying the cardiac conduction block inducted by urea transporter (UT)-B deletion at the transcriptome level. The heart tissues were harvested from UT-B null mice and age-matched wild-type mice for lncRNA sequencing analysis. Based on the sequencing data, the differentially expressed mRNAs (DEMs) and lncRNAs (DELs) between UT-B knockout and control groups were identified, followed by function analysis and mRNA-lncRNA co-expression analysis. The miRNAs were predicted, and then the competing endogenous RNA (ceRNA) network was constructed. UT-B deletion results in the aberrant expression of 588 lncRNAs and 194 mRNAs. These DEMs were significantly enriched in the inflammation-related pathway. A lncRNA-mRNA co-expression network and a ceRNA network were constructed on the basis of the DEMs and DELs. The complement 7 (C7)-NONMMUT137216.1 co-expression pair had the highest correlation coefficient in the co-expression network. NONMMUT140591.1 had the highest degree in the ceRNA network and was involved in the ceRNA of NONMMUT140591.1-mmu-miR-298-5p-Gata5 (GATA binding protein 5). UT-B deletion may promote cardiac conduction block via inflammatory process. The ceRNA NONMMUT140591.1-mmu-miR-298-5p-Gata5 may be a potential molecular mechanism of UT-B knockout-induced cardiac conduction block.

SELECTION OF CITATIONS
SEARCH DETAIL
...