Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Ind Microbiol Biotechnol ; 46(8): 1155-1166, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31203489

ABSTRACT

L-Arginine is an important amino acid with extensive application in the food and pharmaceutical industries. The efficiency of nitrogen uptake and assimilation by organisms is extremely important for L-arginine production. In this study, a strain engineering strategy focusing on upregulate intracellular nitrogen metabolism in Corynebacterium crenatum for L-arginine production was conducted. Firstly, the nitrogen metabolism global transcriptional regulator AmtR was deleted, which has demonstrated the beneficial effect on L-arginine production. Subsequently, this strain was engineered by overexpressing the ammonium transporter AmtB to increase the uptake of NH4+ and L-arginine production. To overcome the drawbacks of using a plasmid to express amtB, Ptac, a strong promoter with amtB gene fragment, was integrated into the amtR region on the chromosome in the Corynebacterium crenatum/ΔamtR. The final strain results in L-arginine production at a titer of 60.9 g/L, which was 35.14% higher than that produced by C. crenatum SYPA5-5.


Subject(s)
Ammonium Compounds/metabolism , Bacterial Proteins/metabolism , Corynebacterium/metabolism , Arginine/biosynthesis , Bacterial Proteins/genetics , Corynebacterium/genetics , Plasmids
2.
J Ind Microbiol Biotechnol ; 45(6): 393-404, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29728854

ABSTRACT

L-Ornithine is a non-protein amino acid with extensive applications in the food and pharmaceutical industries. In this study, we performed metabolic pathway engineering of an L-arginine hyper-producing strain of Corynebacterium crenatum for L-ornithine production. First, we amplified the L-ornithine biosynthetic pathway flux by blocking the competing branch of the pathway. To enhance L-ornithine synthesis, we performed site-directed mutagenesis of the ornithine-binding sites to solve the problem of L-ornithine feedback inhibition for ornithine acetyltransferase. Alternatively, the genes argA from Escherichia coli and argE from Serratia marcescens, encoding the enzymes N-acetyl glutamate synthase and N-acetyl-L-ornithine deacetylase, respectively, were introduced into Corynebacterium crenatum to mimic the linear pathway of L-ornithine biosynthesis. Fermentation of the resulting strain in a 5-L bioreactor allowed a dramatically increased production of L-ornithine, 40.4 g/L, with an overall productivity of 0.673 g/L/h over 60 h. This demonstrates that an increased level of transacetylation is beneficial for L-ornithine biosynthesis.


Subject(s)
Corynebacterium/metabolism , Metabolic Engineering , Ornithine/biosynthesis , Acetylation , Arginine/metabolism , Bacterial Proteins/genetics , Bioreactors , Biosynthetic Pathways , Corynebacterium/genetics , Escherichia coli/genetics , Fermentation , Industrial Microbiology , Mutagenesis, Site-Directed , Mutation , Serratia marcescens/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...