Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 337: 139406, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37406940

ABSTRACT

Formaldehyde as one of the typical indoor pollutants has long been concerned as it can pose a threat to human health. TiO2/CNTs composite with oxygen vacancies and multitype carbon doping (C-TiO2/CNTs) was fabricated using nonthermal plasma for the photocatalytic degradation of formaldehyde. The maximum degradation rate of formaldehyde was 93% and 83% via the new catalyst (with 5% CNTs content) under solar and visible light, respectively. The characterization of the catalyst confirmed the in-situ multitype carbon doping and oxygen vacancies: interstitial carbon doping and oxygen vacancies could dramatically reduce the bandgap and contribute to the improved absorption capability of formaldehyde and electrons. Interfacial carbon doping in the form of C-O-Ti bonds provided a migration channel, whereby photogenerated electrons could efficiently transfer from CNTs to TiO2 and then quench the holes left in the VB of TiO2. Therefore, the multitype carbon doping and oxygen vacancies can expand the light response as well as promote the separation of photo-generated electron/hole pairs. EPR results and experiment section indicated that O2·- plays the most significant role in formaldehyde removal due to the reverse transfer of the electrons. This work advances the understanding of photo-degradation of TiO2/CNTs composite and provides a new route for the abatement of formaldehyde.


Subject(s)
Carbon , Oxygen , Humans , Light , Formaldehyde/chemistry
2.
Nanomaterials (Basel) ; 13(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36770531

ABSTRACT

A novel photocatalytic functional coating was prepared with g-C3N4/TiO2 composites as the photocatalytic active component modified by dielectric barrier discharge (DBD), and it showed an efficient catalytic performance under solar light irradiation. The degradation of xylene released from fluorocarbon coating solvents by the g-C3N4/TiO2 composite coatings was investigated under simulated solar irradiation. The degradation efficiency of the coating mixed with DBD-modified 10%-g-C3N4/TiO2 showed a stable, long-lasting, and significantly higher activity compared to the coatings mixed with the unmodified catalyst. Ninety-eight percent of the xylene released from fluorocarbon coating solvents was successfully removed under solar light irradiation in 2 h. The properties of the catalyst samples before and after modification were evaluated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-vis) spectroscopy, X-ray photoelectron spectroscopy (XPS), and other characterization techniques. The results suggested that DBD-modified g-C3N4/TiO2 showed an improved capture ability and utilization efficiency of solar light with reduced band gap and lower complexation rate of electron-hole pairs. The prepared photocatalytic coating offers an environmentally friendly approach to purify the volatile organic compounds (VOCs) released from solvent-based coatings.

SELECTION OF CITATIONS
SEARCH DETAIL
...