Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
1.
Int J Nanomedicine ; 19: 5193-5211, 2024.
Article in English | MEDLINE | ID: mdl-38859958

ABSTRACT

Purpose: Ovarian cancer is a fatal gynecologic malignancy with a high rate of abdominal metastasis. Chemotherapy still has a poor clinical prognosis for ovarian cancer patients, with cell proliferation and angiogenesis leading to invasion, migration, and recurrence. To overcome these obstacles, we constructed a novel HA-modified paclitaxel and diosgenin liposome (PEG-TK-HA-PDLPs) using two novel functional materials, DSPE-PEG2000-HA and DSPE-PEG2000-TK-PEG5000, to specifically deliver the drugs to the tumor site in order to reduce OC cell proliferation and anti-angiogenic generation, thereby inhibiting invasion and migration. Methods and Results: PEG-TK-HA-PDLPs were prepared by film dispersion, with ideal physicochemical properties and exhibits active targeting for enhanced cellular uptake. The ZIP synergy score for PTX and Dios was calculated using the online SynergyFinder software to be 3.15, indicating synergy. In vitro results showed that PEG-TK-HA-PDLPs were highly cytotoxic to ID8 cells, induced ID8 cell apoptosis, and inhibited ID8 cell migration and invasion. In vivo studies showed that PEG-TK-HA-PDLPs could prolong the circulation time in the blood, accumulate significantly in the tumor site, and effectively fight against angiogenesis with significant anti-tumor effects. Conclusion: The production of PEG-TK-HA-PDLPs is an effective strategy for the treatment of OC.


Subject(s)
Apoptosis , Diosgenin , Hyaluronic Acid , Liposomes , Ovarian Neoplasms , Paclitaxel , Polyethylene Glycols , Reactive Oxygen Species , Female , Liposomes/chemistry , Liposomes/pharmacokinetics , Paclitaxel/pharmacology , Paclitaxel/chemistry , Paclitaxel/pharmacokinetics , Paclitaxel/administration & dosage , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Diosgenin/pharmacology , Diosgenin/chemistry , Diosgenin/pharmacokinetics , Diosgenin/administration & dosage , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Cell Line, Tumor , Polyethylene Glycols/chemistry , Animals , Reactive Oxygen Species/metabolism , Humans , Apoptosis/drug effects , Drug Synergism , Cell Proliferation/drug effects , Cell Movement/drug effects , Mice , Mice, Inbred BALB C , Mice, Nude , Phosphatidylethanolamines
2.
J Dig Dis ; 25(4): 238-247, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38779802

ABSTRACT

OBJECTIVES: As a serious complication of moderately severe acute pancreatitis (MSAP) and severe acute pancreatitis (SAP), infected pancreatic necrosis (IPN) can lead to a prolonged course of interventional therapy. Most predictive models designed to identify such patients are complex or lack validation. The aim of this study was to develop a predictive model for the early detection of IPN in MSAP and SAP. METHODS: A total of 594 patients with MSAP or SAP were included in the study. To reduce dimensionality, least absolute shrinkage and selection operator regression analysis was used to screen potential predictive variables, a nomogram was then constructed using logistic regression analysis. The receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were used to evaluate the discrimination, accuracy, and clinical efficacy of the model. External data were also obtained to further validate the constructed model. RESULTS: There were 476, 118, and 82 patients in the training, internal validation, and external validation cohorts, respectively. Platelet count, hematocrit, albumin/globulin, severity of acute pancreatitis, and modified computed tomography severity index score were independent factors for predicting IPN in MSAP and SAP. The area under the ROC curves were 0.923, 0.940, and 0.817, respectively, in the three groups. There was a good consistency between the actual probabilities and the predicted probabilities. DCA revealed excellent clinical utility. CONCLUSION: The constructed nomogram is a simple and feasible model that has good clinical predictive value and efficacy in clinical decision-making for IPN in MSAP and SAP.


Subject(s)
Nomograms , Pancreatitis, Acute Necrotizing , Severity of Illness Index , Humans , Male , Female , Middle Aged , Pancreatitis, Acute Necrotizing/complications , Pancreatitis, Acute Necrotizing/diagnosis , Adult , ROC Curve , Aged , Predictive Value of Tests , Tomography, X-Ray Computed , Retrospective Studies , Pancreatitis/diagnosis , Pancreatitis/complications
3.
Comput Methods Programs Biomed ; 253: 108237, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820715

ABSTRACT

BACKGROUND AND OBJECTIVES: Graph neural network (GNN) has been extensively used in histopathology whole slide image (WSI) analysis due to the efficiency and flexibility in modelling relationships among entities. However, most existing GNN-based WSI analysis methods only consider the pairwise correlation of patches from one single perspective (e.g. spatial affinity or embedding similarity) yet ignore the intrinsic non-pairwise relationships present in gigapixel WSI, which are likely to contribute to feature learning and downstream tasks. The objective of this study is therefore to explore the non-pairwise relationships in histopathology WSI and exploit them to guide the learning of slide-level representations for better classification performance. METHODS: In this paper, we propose a novel Masked HyperGraph Learning (MaskHGL) framework for weakly supervised histopathology WSI classification. Compared with most GNN-based WSI classification methods, MaskHGL exploits the non-pairwise correlations between patches with hypergraph and global message passing conducted by hypergraph convolution. Concretely, multi-perspective hypergraphs are first built for each WSI, then hypergraph attention is introduced into the jointed hypergraph to propagate the non-pairwise relationships and thus yield more discriminative node representation. More importantly, a masked hypergraph reconstruction module is devised to guide the hypergraph learning which can generate more powerful robustness and generalization than the method only using hypergraph modelling. Additionally, a self-attention-based node aggregator is also applied to explore the global correlation of patches in WSI and produce the slide-level representation for classification. RESULTS: The proposed method is evaluated on two public TCGA benchmark datasets and one in-house dataset. On the public TCGA-LUNG (1494 WSIs) and TCGA-EGFR (696 WSIs) test set, the area under receiver operating characteristic (ROC) curve (AUC) were 0.9752±0.0024 and 0.7421±0.0380, respectively. On the USTC-EGFR (754 WSIs) dataset, MaskHGL achieved significantly better performance with an AUC of 0.8745±0.0100, which surpassed the second-best state-of-the-art method SlideGraph+ 2.64%. CONCLUSIONS: MaskHGL shows a great improvement, brought by considering the intrinsic non-pairwise relationships within WSI, in multiple downstream WSI classification tasks. In particular, the designed masked hypergraph reconstruction module promisingly alleviates the data scarcity and greatly enhances the robustness and classification ability of our MaskHGL. Notably, it has shown great potential in cancer subtyping and fine-grained lung cancer gene mutation prediction from hematoxylin and eosin (H&E) stained WSIs.


Subject(s)
Neural Networks, Computer , Humans , Algorithms , Supervised Machine Learning , Image Processing, Computer-Assisted/methods , Lung Neoplasms/pathology , Image Interpretation, Computer-Assisted/methods
4.
J Chromatogr Sci ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757928

ABSTRACT

In this work, a magnetic adsorption material based on metal-organic framework (Fe3O4@ZnAl-LDH@MIL-53(Al)) was synthesized and used as an adsorbent in the process of magnetic solid phase extraction. Then, a high-performance liquid chromatograph was used to quantitatively detect triazole fungicides in samples. In order to verify the successful preparation of the material, a series of characterization analyses were carried out. Besides, the key parameters that may affect the extraction efficiency have been optimized, and under optimal conditions the three triazole fungicides showed good linearity in the range of 10-1000 µg/L (R2 ≥ 0.9796); Limit of detections were ranged from 0.013 to 0.030 µg/mL. Finally, the established method was applied to the detection of triazole fungicides in four fresh juice samples. The results showed that the target analyte was not detected in all the test samples. By detecting the recoveries (73.3-104.3%) and coefficient variation (RSD ≤ 6.8%) of triazole fungicides in fortified samples, it proved that this established method meets the requirements of pesticide residue analysis and showed excellent application potential.

6.
Anal Bioanal Chem ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38705905

ABSTRACT

Gold nanoclusters (AuNCs) are a class of novel luminescent nanomaterials that exhibit unique properties of ultra-small size, featuring strong anti-photo-bleaching ability, substantial Stokes shift, good biocompatibility, and low toxicity. Various biomolecules have been developed as templates or ligands to protect AuNCs with enhanced stability and luminescent properties for biomedical applications. In this review, the synthesis of AuNCs based on biomolecules including amino acids, peptides, proteins and DNA are summarized. Owing to the advantages of biomolecule-protected AuNCs, they have been employed extensively for diverse applications. The biological applications, particularly in bioimaging, biosensing, disease therapy and biocatalysis have been described in detail herein. Finally, current challenges and future potential prospects of bio-templated AuNCs in biological research are briefly discussed.

7.
J Ovarian Res ; 17(1): 55, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38444005

ABSTRACT

BACKGROUND: The efficacy of subsequent therapy after poly-ADP-ribose polymerase (PARP) inhibitor maintenance treatment has raised concerns. Retrospective studies show worse outcomes for platinum-based chemotherapy after progression of PARP inhibitor-maintenance therapy, especially in BRCA-mutant patients. We aimed to describe subsequent therapy in ovarian cancer patients after PARP inhibitor-maintenance therapy and evaluate their response to treatment. We focused on chemotherapy for patients with a progression-free interval (PFI) of ≥ 6 months after prior platinum treatment, based on BRCA status. METHODS: We analyzed real-world data from Peking University Cancer Hospital, subsequent therapy after progression to PARP inhibitor-maintenance therapy for epithelial ovarian cancer between January 2016 and December 2022. Clinicopathological characteristics and treatment outcomes were extracted from medical records. The last follow-up was in May 2023. RESULTS: A total of 102 patients were included, of which 29 (28.4%) had a germline BRCA1/2 mutation and 73 (71.6%) exhibited BRCA1/2 wild-type mutations. The PARP inhibitors used were Olaparib (n = 62, 60.8%), Niraparib (n = 35, 34.3%), and others (n = 5, 4.9%). The overall response rate (ORR) was 41.2%, and the median time to second progression (mTTSP) was 8.1 months (95%CI 5.8-10.2). Of 91 platinum-sensitive patients (PFI ≥ 6 months) after progression to PARP inhibitor-maintenance therapy, 65 patients subsequently received platinum regimens. Among them, 30 had received one line of chemotherapy before PARP inhibitor-maintenance therapy. Analysis of these 30 patients by BRCA status showed an ORR of 16.7% versus 33.3% and mTTSP of 7.1 (95% CI 4.9-9.1) versus 6.2 months (95% CI 3.7-8.3, P = 0.550), for BRCA-mutant and wild-type patients, respectively. For the remaining 35 patients who had received two or more lines of chemotherapy before PARP inhibitor-maintenance therapy, ORR was 57.1% versus 42.9%, and mTTSP was 18.0 (95% CI 5.0-31.0) versus 8.0 months (95% CI 4.9-11.1, P = 0.199), for BRCA-mutant and wild-type patients, respectively. CONCLUSION: No differences in survival outcomes were observed among patients with different BRCA statuses. Furthermore, for patients who had undergone two or more lines of chemotherapy before PARP inhibitor maintenance therapy, no negative effects of PARP inhibitors on subsequent treatment were found, regardless of BRCA status.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Humans , Female , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , BRCA1 Protein/genetics , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Retrospective Studies , BRCA2 Protein/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Disease Progression , Adenosine Diphosphate Ribose
8.
Biosensors (Basel) ; 14(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38534224

ABSTRACT

Bimetallic coordination polymers (CPs) have two different metal ions as connecting nodes in their polymer structure. The synthesis methods of bimetallic CPs are mainly categorized into the one-pot method and post-synthesis modifications according to various needs. Compared with monometallic CPs, bimetallic CPs have synergistic effects and excellent properties, such as higher gas adsorption rate, more efficient catalytic properties, stronger luminescent properties, and more stable loading platforms, which have been widely applied in the fields of gas adsorption, catalysis, energy storage as well as conversion, and biosensing. In recent years, the study of bimetallic CPs synergized with cancer drugs and functional nanomaterials for the therapy of cancer has increasingly attracted the attention of scientists. This review presents the research progress of bimetallic CPs in biosensing and biomedicine in the last five years and provides a perspective for their future development.


Subject(s)
Nanostructures , Polymers , Polymers/chemistry , Metals , Catalysis , Adsorption
9.
Virol Sin ; 39(2): 309-318, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458399

ABSTRACT

SARS-CoV-2 infection-induced hyper-inflammation is a key pathogenic factor of COVID-19. Our research, along with others', has demonstrated that mast cells (MCs) play a vital role in the initiation of hyper-inflammation caused by SARS-CoV-2. In previous study, we observed that SARS-CoV-2 infection induced the accumulation of MCs in the peri-bronchus and bronchioalveolar-duct junction in humanized mice. Additionally, we found that MC degranulation triggered by the spike protein resulted in inflammation in alveolar epithelial cells and capillary endothelial cells, leading to subsequent lung injury. The trachea and bronchus are the routes for SARS-CoV-2 transmission after virus inhalation, and inflammation in these regions could promote viral spread. MCs are widely distributed throughout the respiratory tract. Thus, in this study, we investigated the role of MCs and their degranulation in the development of inflammation in tracheal-bronchial epithelium. Histological analyses showed the accumulation and degranulation of MCs in the peri-trachea of humanized mice infected with SARS-CoV-2. MC degranulation caused lesions in trachea, and the formation of papillary hyperplasia was observed. Through transcriptome analysis in bronchial epithelial cells, we found that MC degranulation significantly altered multiple cellular signaling, particularly, leading to upregulated immune responses and inflammation. The administration of ebastine or loratadine effectively suppressed the induction of inflammatory factors in bronchial epithelial cells and alleviated tracheal injury in mice. Taken together, our findings confirm the essential role of MC degranulation in SARS-CoV-2-induced hyper-inflammation and the subsequent tissue lesions. Furthermore, our results support the use of ebastine or loratadine to inhibit SARS-CoV-2-triggered degranulation, thereby preventing tissue damage caused by hyper-inflammation.


Subject(s)
Bronchi , COVID-19 , Cell Degranulation , Mast Cells , SARS-CoV-2 , Trachea , Animals , Mast Cells/virology , Mast Cells/immunology , COVID-19/immunology , COVID-19/virology , COVID-19/pathology , Mice , Trachea/virology , Trachea/pathology , Bronchi/virology , Bronchi/pathology , Humans , Inflammation/virology , Epithelial Cells/virology , Disease Models, Animal
10.
BMC Womens Health ; 24(1): 100, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326784

ABSTRACT

BACKGROUND: Undertreatment of ovarian cancer is common among older women. We aimed to evaluate the treatment modalities offered to older patients and their impact on overall survival (OS). METHODS: The study identified 5,055 patients with high-grade serous ovarian cancer and 3584 patients with advanced stage (IIIC + IV) disease from the Surveillance, Epidemiology, and End Results (SEER) database from January 1, 2010, to December 31, 2017. We performed comparisons of OS and ovarian cancer-specific survival (OCSS) across age groups using a Cox proportional hazards model. RESULTS: Very elderly patients (≥ 75 years old) received treatment with significantly less surgical complexity, such as no lymphadenectomy (59.7% vs. 48.6%; p < 0.001) and a lower rate of optimal debulking surgery (44.0% vs. 52.7%; p < 0.001), as well as lower rates of chemotherapy (78.2% vs. 89.4%; P<0.001) and standard treatment (70.6% vs. 85%; p < 0.001). High proportions of both very elderly and elderly patients received neoadjuvant chemotherapy (NACT), with no significant difference (38.7% vs. 36.2%; P = 0.212). Patients aged ≥ 75 years had significantly worse OS and OCSS. CONCLUSION: With increasing age, the survival rate of women with ovarian cancer decreases significantly. Noticeably fewer ovarian cancer patients aged over 75 years receive standard treatments, and more very elderly patients are treated with NACT.


Subject(s)
Ovarian Neoplasms , Aged , Humans , Female , Neoplasm Staging , Chemotherapy, Adjuvant , Retrospective Studies , Ovarian Neoplasms/pathology , Neoadjuvant Therapy
11.
Int J Obes (Lond) ; 48(6): 849-858, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38341506

ABSTRACT

OBJECTIVE: Fatty acids play a critical role in the proper functioning of the brain. This study investigated the effects of a high-fat (HF) diet on brain fatty acid profiles of offspring exposed to maternal gestational diabetes mellitus (GDM). METHODS: Insulin receptor antagonist (S961) and HF diet were used to establish the GDM animal model. Brain fatty acid profiles of the offspring mice were measured by gas chromatography at weaning and adulthood. Protein expressions of the fatty acid transport pathway Wnt3/ß-catenin and the target protein major facilitator superfamily domain-containing 2a (MFSD2a) were measured in the offspring brain by Western blot. RESULTS: Maternal GDM increased the body weight of male offspring (P < 0.05). In weaning offspring, factorial analysis showed that maternal GDM increased the monounsaturated fatty acid (MUFA) percentage of the weaning offspring's brain (P < 0.05). Maternal GDM decreased offspring brain arachidonic acid (AA), but HF diet increased brain linoleic acid (LA) (P < 0.05). Maternal GDM and HF diet reduced offspring brain docosahexaenoic acid (DHA), and the male offspring had higher DHA than the female offspring (P < 0.05). In adult offspring, factorial analysis showed that HF diet increased brain MUFA in offspring, and male offspring had higher brain MUFA than female offspring (P < 0.05). The HF diet increased brain LA in the offspring. Male offspring had higher level of AA than female offspring (P < 0.05). HF diet reduced DHA in the brains of female offspring. The brain protein expression of ß-catenin and MFSD2a in both weaning and adult female offspring was lower in the HF + GDM group than in the CON group (P < 0.05). CONCLUSIONS: Maternal GDM increased the susceptibility of male offspring to HF diet-induced obesity. HF diet-induced adverse brain fatty acid profiles in both male and female offspring exposed to GDM.


Subject(s)
Brain , Diabetes, Gestational , Diet, High-Fat , Fatty Acids , Prenatal Exposure Delayed Effects , Animals , Pregnancy , Female , Diabetes, Gestational/metabolism , Mice , Diet, High-Fat/adverse effects , Brain/metabolism , Prenatal Exposure Delayed Effects/metabolism , Male , Fatty Acids/metabolism , Disease Models, Animal , Maternal Nutritional Physiological Phenomena
12.
Fitoterapia ; 174: 105867, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382891

ABSTRACT

The concept of multi-target-directed ligands offers fresh perspectives for the creation of brand-new Alzheimer's disease medications. To explore their potential as multi-targeted anti-Alzheimer's drugs, eighteen new bakuchiol derivatives were designed, synthesized, and evaluated. The structures of the new compounds were elucidated by IR, NMR, and HRMS. Eighteen compounds were assayed for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in vitro using Ellman's method. It was shown that most of the compounds inhibited AChE and BuChE to varying degrees, but the inhibitory effect on AChE was relatively strong, with fourteen compounds showing inhibition of >50% at the concentration of 200 µM. Among them, compound 3g (IC50 = 32.07 ± 2.00 µM) and compound 3n (IC50 = 34.78 ± 0.34 µM) showed potent AChE inhibitory activities. Molecular docking studies and molecular dynamics simulation showed that compound 3g interacts with key amino acids at the catalytically active site (CAS) and peripheral anionic site (PAS) of acetylcholinesterase and binds stably to acetylcholinesterase. On the other hand, compounds 3n and 3q significantly reduced the pro-inflammatory cytokines TNF-α and IL-6 released from LPS-induced RAW 264.7 macrophages. Compound 3n possessed both anti-acetylcholinesterase activity and anti-inflammatory properties. Therefore, an in-depth study of compound 3n is expected to be a multi-targeted anti-AD drug.


Subject(s)
Alzheimer Disease , Butyrylcholinesterase , Phenols , Humans , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Drug Design
13.
Int J Biol Macromol ; 260(Pt 1): 129277, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38211918

ABSTRACT

GH 11 endo-ß-1,4-xylanase (Xy) was a crucial enzyme for xylooligosaccharides (XOS) production. The lower reusability and higher cost of purification has limited the industrial application of Xy. Addressing these challenges, our study utilized various immobilization techniques, different supports and forces for Xy immobilization. This study presents a new method in the development of Fe3O4@PDA@MOF-Xy which is immobilized via multi-point interaction forces, demonstrating a significant advancement in protein loading capacity (80.67 mg/g), and exhibiting remarkable tolerance to acidic and alkaline conditions. This method significantly improved Xy reusability and efficiency for industrial applications, maintaining 60 % activity over 10 cycles. Approximately 23 % XOS production was achieved by Fe3O4@PDA@MOF-Xy. Moreover, the yield of XOS from cobcorn xylan using this system was 1.15 times higher than that of the free enzyme system. These results provide a theoretical and applicative basis for enzyme immobilization and XOS industrial production.


Subject(s)
Endo-1,4-beta Xylanases , Oligosaccharides , Endo-1,4-beta Xylanases/metabolism , Oligosaccharides/metabolism , Xylans/metabolism , Glucuronates/metabolism , Magnetic Phenomena , Hydrolysis
14.
Cell Metab ; 36(3): 557-574.e10, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38237601

ABSTRACT

Augmented CD4+ T cell response in autoimmunity is characterized by extensive metabolic reprogramming. However, the epigenetic molecule that drives the metabolic adaptation of CD4+ T cells remains largely unknown. Here, we show that lysine acetyltransferase 6A (KAT6A), an epigenetic modulator that is clinically associated with autoimmunity, orchestrates the metabolic reprogramming of glucose in CD4+ T cells. KAT6A is required for the proliferation and differentiation of proinflammatory CD4+ T cell subsets in vitro, and mice with KAT6A-deficient CD4+ T cells are less susceptible to experimental autoimmune encephalomyelitis and colitis. Mechanistically, KAT6A orchestrates the abundance of histone acetylation at the chromatin where several glycolytic genes are located, thus affecting glucose metabolic reprogramming and subsequent CD4+ T cell responses. Treatment with KAT6A small-molecule inhibitors in mouse models shows high therapeutic value for targeting KAT6A in autoimmunity. Our study provides novel insights into the epigenetic programming of immunometabolism and suggests potential therapeutic targets for patients with autoimmunity.


Subject(s)
Lysine Acetyltransferases , T-Lymphocytes , Animals , Humans , Mice , Autoimmunity/genetics , CD4-Positive T-Lymphocytes/metabolism , Epigenesis, Genetic , Glucose/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Lysine Acetyltransferases/genetics , Lysine Acetyltransferases/metabolism , T-Lymphocytes/metabolism
15.
Drug Des Devel Ther ; 18: 133-159, 2024.
Article in English | MEDLINE | ID: mdl-38283137

ABSTRACT

Purpose: Alzheimer's disease (AD) is the most common neurodegenerative disease, and its multifactorial nature increases the difficulty of medical research. To explore an effective treatment for AD, a series of novel tacrine-selegiline hybrids with ChEs and MAOs inhibitory activities were designed and synthesized as multifunctional drugs. Methods: All designed compounds were evaluated in vitro for their inhibition of cholinesterases (AChE/BuChE) and monoamine oxidases (MAO-A/B) along with their blood-brain barrier permeability. Then, further biological activities of the optimizing compound 7d were determined, including molecular model analysis, in vitro cytotoxicity, acute toxicity studies in vivo, and pharmacokinetic and pharmacodynamic property studies in vivo. Results: Most synthesized compounds demonstrated potent inhibitory activity against ChEs/MAOs. Particularly, compound 7d exhibited good and well-balanced activity against ChEs (hAChE: IC50 = 1.57 µM, hBuChE: IC50 = 0.43 µM) and MAOs (hMAO-A: IC50 = 2.30 µM, hMAO-B: IC50 = 4.75 µM). Molecular modeling analysis demonstrated that 7d could interact simultaneously with both the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE in a mixed-type manner and also exhibits binding affinity towards BuChE and MAO-B. Additionally, 7d displayed excellent permeability of the blood-brain barrier, and under the experimental conditions, it elicited low or no toxicity toward PC12 and BV-2 cells. Furthermore, 7d was not acutely toxic in mice at doses up to 2500 mg/kg and could improve the cognitive function of mice with scopolamine-induced memory impairment. Lastly, 7d possessed well pharmacokinetic characteristics. Conclusion: In light of these results, it is clear that 7d could potentially serve as a promising multi-functional drug for the treatment of AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Taurine/analogs & derivatives , Mice , Animals , Tacrine/pharmacology , Tacrine/chemistry , Tacrine/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Cholinesterases/metabolism , Selegiline/pharmacology , Selegiline/therapeutic use , Monoamine Oxidase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Neurodegenerative Diseases/drug therapy , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/chemistry , Acetylcholinesterase/metabolism , Drug Design , Structure-Activity Relationship , Amyloid beta-Peptides
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123690, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38043289

ABSTRACT

Compositing has been the main approach for material creation via wisely combining material components with different properties. MnO2 nanosheets (MNSs) with thin 2 D morphology are usually applied to composite molecules or nanomaterials for biosensing and bioimaging applications. However, such composition is actually structurally unmatched, albeit performance matching. Here, a series of benefits merely on the basis of structural match have been unearthed via tailoring MNSs with four sizes by synthesis under controllable hypergravity field. The classical fluorophore-quencher couple was utilized as the subject model, where the soft supramolecular nanogels based on aggregation-induced emission (AIE)-active gold nanoclusters were wrapped by MNSs of strong absorption. By comparative study of one-on-one wrapping and one-to-many encapsulation with geometrical selection of different MNSs, we found that the one-on-one wrapping model protected weakly-bonded nanogels from combination-induced distortion and strengthened nanogel networks via endowing exoskeleton. Besides, wrapping pattern and size-match significantly enhanced the quenching efficiency of MNSs towards the emissive nanogels. More importantly, the well-wrapped nanocomposites had considerable enhanced biological compatibility with much lower cytotoxicity and higher transfection capacity than the untailored MNSs composite and could serve as cellular glutathione detection.


Subject(s)
Hypergravity , Nanocomposites , Oxides/chemistry , Nanogels , Gold/chemistry , Manganese Compounds/chemistry , Nanocomposites/chemistry , Glutathione/chemistry
17.
World Neurosurg ; 181: e655-e677, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37898266

ABSTRACT

OBJECTIVE: A meta-analysis of randomized controlled trials was conducted to assess efficacy and safety of bilateral ultrasound-guided erector spinae plane block (ESPB) for postoperative analgesia in patients receiving spine surgery. METHODS: PubMed, Embase, and CENTRAL databases were searched by 2 reviewers independently to identify randomized controlled trials evaluating the efficacy of ultrasound-guided ESPB for pain management in patients undergoing spine surgery. For meta-analysis, mean difference (MD) and 95% confidence interval (CI) were selected for continuous data, and risk ratio (RR) and 95% CI were selected for dichotomous variables. RESULTS: A total of 25 randomized controlled trials including 1917 patients (873 in ESPB group and 874 in control group) were eligible for inclusion. At rest, ESPB was associated with significantly lower pain intensity at 0, 2, 4, 6, 8, 12, 24, and 48 hours compared with the control group. During movement, ESPB was associated with significantly lower pain intensity at 0, 4, 6, 8, 12, 24, and 48 hours compared with the control group. Significantly reduced opioid consumption (MD = -6.29, 95% CI [-8.16, 4.41], P < 0.001), prolonged time for first rescue analgesia (MD = 7.51, 95% CI [3.47, 11.54], P < 0.001), fewer patients needing rescue analgesia (RR = 0.34, 95% CI [0.28, 0.43], P < 0.0001), improved patient satisfaction (MD = 1.34, 95% CI [0.88, 1.80], P < 0.001), and shorter length of hospital stay (MD = -0.38, [95% CI -0.50, -0.26], P < 0.001) were demonstrated after use of ESPB. Additionally, ESPB was associated with decreased risks of any adverse event (RR = 0.51, 95% CI [0.43, 0.60], P < 0.001) and postoperative nausea and vomiting events (RR = 0.39, 95% CI [0.31, 0.49], P < 0.001). CONCLUSIONS: Ultrasound-guided ESPB is an effective adjunctive technique with good tolerability for multimodal analgesia in management of pain in patients undergoing spine surgery.


Subject(s)
Analgesia , Nerve Block , Humans , Pain , Pain, Postoperative/drug therapy , Postoperative Nausea and Vomiting , Randomized Controlled Trials as Topic , Ultrasonography, Interventional
18.
Article in English | MEDLINE | ID: mdl-38083177

ABSTRACT

Cervical cell detection is crucial to cervical cytology screening at early stage. Currently most cervical cell detection methods use anchor-based pipeline to achieve the localization and classification of cells, e.g. faster R-CNN and YOLOv3. However, the anchors generally need to be pre-defined before training and the detection performance is inevitably sensitive to these pre-defined hyperparameters (e.g. number of anchors, anchor size and aspect ratios). More importantly, these preset anchors fail to conform to the cells with different morphology at inference phase. In this paper, we present a key-points based anchor-free cervical cell detector based on YOLOv3. Compared with the conventional YOLOv3, the proposed method applies a key-points based anchor-free strategy to represent the cells in the initial prediction phase instead of the preset anchors. Therefore, it can generate more desirable cell localization effect through refinement. Furthermore, PAFPN is applied to enhance the feature hierarchy. GIoU loss is also introduced to optimize the small cell localization in addition to focal loss and smooth L1 loss. Experimental results on cervical cytology ROI datasets demonstrate the effectiveness of our method for cervical cell detection and the robustness to different liquid-based preparation styles (i.e. drop-slide, membrane-based and sedimentation).


Subject(s)
Cervix Uteri , Uterine Cervical Neoplasms , Humans , Female , Vaginal Smears/methods , Uterine Cervical Neoplasms/diagnosis
19.
bioRxiv ; 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37781612

ABSTRACT

The mesoscale organization of molecules into membraneless biomolecular condensates is emerging as a key mechanism of rapid spatiotemporal control in cells1. Principles of biomolecular condensation have been revealed through in vitro reconstitution2. However, intracellular environments are much more complex than test-tube environments: They are viscoelastic, highly crowded at the mesoscale, and are far from thermodynamic equilibrium due to the constant action of energy-consuming processes3. We developed synDrops, a synthetic phase separation system, to study how the cellular environment affects condensate formation. Three key features enable physical analysis: synDrops are inducible, bioorthogonal, and have well-defined geometry. This design allows kinetic analysis of synDrop assembly and facilitates computational simulation of the process. We compared experiments and simulations to determine that macromolecular crowding promotes condensate nucleation but inhibits droplet growth through coalescence. ATP-dependent cellular activities help overcome the frustration of growth. In particular, actomyosin dynamics potentiate droplet growth by reducing confinement and elasticity in the mammalian cytoplasm, thereby enabling synDrop coarsening. Our results demonstrate that mesoscale molecular assembly is favored by the combined effects of crowding and active matter in the cytoplasm. These results move toward a better predictive understanding of condensate formation in vivo.

20.
Am J Cancer Res ; 13(9): 4305-4314, 2023.
Article in English | MEDLINE | ID: mdl-37818044

ABSTRACT

This study aimed to conduct a survival analysis of thoracic esophageal squamous cell carcinoma (ESCC) patients treated with radical chemoradiotherapy and identify prognostic variables from among the hematological and radiation parameters. Cases of patients with ESCC receiving definitive chemoradiotherapy at Jiangsu Cancer Hospital between January 2018 and September 2020 were screened. A Cox proportional hazards model was used to assess the effect of hematological and radiation parameters on the overall survival (OS). The neutrophil-to-lymphocyte ratio (NLR) was calculated by dividing the absolute neutrophil count (ANC) by the absolute lymphocyte count (ALC) in the week prior to radical chemoradiotherapy. Variables associated with radiation were gathered based on dose-volume histograms (DVH). X-tile software was used to determine the optimal cutoff values for pretreatment NLR and posttreatment ALC nadir. Associations between lymphopenia and dose-volume parameters were analyzed using multivariate logistic regression. The study included 104 ESCC patients. The median follow-up of surviving patients was 45.0 months (interquartile range: 40.2-52.2), with 1- and 3-year OS rates of 88.0% and 62.7%, respectively. Multivariate Cox regression analysis demonstrated a significant survival benefit in patients with low baseline NLR (≤ 2.2), high ALC nadir (> 0.24*109/L), and desirable radiation parameters for the heart and thoracic vertebrae. Increased dose-volume parameters of the heart, lungs, and thoracic vertebrae were correlated with a high probability of radiation-induced lymphopenia (RIL) risk (P < 0.05). Baseline NLR and RIL are significantly related to survival outcomes in ESCC patients. Optimization of radiation parameters of cardiopulmonary and thoracic vertebrae can be effective in the prevention of RIL.

SELECTION OF CITATIONS
SEARCH DETAIL
...