Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 255
Filter
1.
Cell Res ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898113

ABSTRACT

The shift of carbon utilization from primarily glucose to other nutrients is a fundamental metabolic adaptation to cope with decreased blood glucose levels and the consequent decline in glucose oxidation. AMP-activated protein kinase (AMPK) plays crucial roles in this metabolic adaptation. However, the underlying mechanism is not fully understood. Here, we show that PDZ domain containing 8 (PDZD8), which we identify as a new substrate of AMPK activated in low glucose, is required for the low glucose-promoted glutaminolysis. AMPK phosphorylates PDZD8 at threonine 527 (T527) and promotes the interaction of PDZD8 with and activation of glutaminase 1 (GLS1), a rate-limiting enzyme of glutaminolysis. In vivo, the AMPK-PDZD8-GLS1 axis is required for the enhancement of glutaminolysis as tested in the skeletal muscle tissues, which occurs earlier than the increase in fatty acid utilization during fasting. The enhanced glutaminolysis is also observed in macrophages in low glucose or under acute lipopolysaccharide (LPS) treatment. Consistent with a requirement of heightened glutaminolysis, the PDZD8-T527A mutation dampens the secretion of pro-inflammatory cytokines in macrophages in mice treated with LPS. Together, we have revealed an AMPK-PDZD8-GLS1 axis that promotes glutaminolysis ahead of increased fatty acid utilization under glucose shortage.

2.
Neuroscience ; 551: 103-118, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38810691

ABSTRACT

Monosialoganglioside GM1 (GM1) has long been used as a therapeutic agent for neurological diseases in the clinical treatment of ischemic stroke. However, the mechanism underlying the neuroprotective function of GM1 is still obscure until now. In this study, we investigated the effects of GM1 in ischemia and reperfusion (I/R) brain injury models. Middle cerebral artery occlusion and reperfusion (MCAO/R) rats were treated with GM1 (60 mg·kg-1·d-1, tail vein injection) for 2 weeks. The results showed that GM1 substantially attenuated the MCAO/R-induced neurological dysfunction and inhibited the inflammatory responses and cell apoptosis in ischemic parietal cortex. We further revealed that GM1 inhibited the activation of NFκB/MAPK signaling pathway induced by MCAO/R injury. To explore its underlying mechanism of the neuroprotective effect, transcriptome sequencing was introduced to screen the differentially expressed genes (DEGs). By function enrichment and PPI network analyses, Sptbn1 was identified as a node gene in the network regulated by GM1 treatment. In the MCAO/R model of rats and oxygen-glucose deprivation and reperfusion (OGD/R) model of primary culture of rat cortical neurons, we first found that SPTBN1 was involved in the attenuation of I/R induced neuronal injury after GM1 administration. In SPTBN1-knockdown SH-SY5Y cells, the treatment with GM1 (20 µM) significantly increased SPTBN1 level. Moreover, OGD/R decreased SPTBN1 level in SPTBN1-overexpressed SH-SY5Y cells. These results indicated that GM1 might achieve its potent neuroprotective effects by regulating inflammatory response, cell apoptosis, and cytomembrane and cytoskeleton signals through SPTBN1. Therefore, SPTBN1 may be a potential target for the treatment of ischemic stroke.


Subject(s)
G(M1) Ganglioside , Neurons , Neuroprotective Agents , Rats, Sprague-Dawley , Reperfusion Injury , Signal Transduction , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , G(M1) Ganglioside/pharmacology , Male , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Neuroprotective Agents/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Rats , Apoptosis/drug effects , Apoptosis/physiology , Spectrin/metabolism
3.
Front Neurosci ; 18: 1368552, 2024.
Article in English | MEDLINE | ID: mdl-38716255

ABSTRACT

Probucol has been utilized as a cholesterol-lowering drug with antioxidative properties. However, the impact and fundamental mechanisms of probucol in obesity-related cognitive decline are unclear. In this study, male C57BL/6J mice were allocated to a normal chow diet (NCD) group or a high-fat diet (HFD) group, followed by administration of probucol to half of the mice on the HFD regimen. Subsequently, the mice were subjected to a series of behavioral assessments, alongside the measurement of metabolic and redox parameters. Notably, probucol treatment effectively alleviates cognitive and social impairments induced by HFD in mice, while exhibiting no discernible influence on mood-related behaviors. Notably, the beneficial effects of probucol arise independently of rectifying obesity or restoring systemic glucose and lipid homeostasis, as evidenced by the lack of changes in body weight, serum cholesterol levels, blood glucose, hyperinsulinemia, systemic insulin resistance, and oxidative stress. Instead, probucol could regulate the levels of nitric oxide and superoxide-generating proteins, and it could specifically alleviate HFD-induced hippocampal insulin resistance. These findings shed light on the potential role of probucol in modulating obesity-related cognitive decline and urge reevaluation of the underlying mechanisms by which probucol exerts its beneficial effects.

4.
Sci Rep ; 14(1): 9656, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671238

ABSTRACT

Weedy rice is a major problem in paddy fields around the world. It is well known that weedy rice appears to grow faster and mature earlier than cultivated rice. It is possible that differences in the root microbial genetics are correlated with this characteristic. This study incorporated 16S rRNA amplicon sequencing to study the microbial composition in the rhizosphere and endosphere of rice root. No significant difference was found between the microbiota associated with weedy and cultivated rice lines grown in the same field. It was found that the endosphere had less microbial diversity compared to the rhizosphere. The major groups of bacteria found in the endosphere are from the phylum Proteobacteria, Myxococcota, Chloroflexota, and Actinobacteria. In addition, by analyzing the microbiome of japonica rice grown in the field in a temperate climate, we found that despite differences in genotype and location, some bacterial taxa were found to be common and these members of the putative rice core microbiome can also be detected by in situ hybridization. The delineation of a core microbiome in the endosphere of rice suggests that these bacterial taxa might be important in the life cycle of a wide range of rice types.


Subject(s)
Microbiota , Oryza , Plant Roots , RNA, Ribosomal, 16S , Rhizosphere , Soil Microbiology , Oryza/microbiology , Oryza/growth & development , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Phylogeny , Tropical Climate , Plant Weeds/microbiology
5.
J Fungi (Basel) ; 10(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38667930

ABSTRACT

Over the past two decades, numerous novel species have been identified within Dictyosporiaceae, primarily in Dictyocheirospora and Dictyosporium. A recent monograph has revealed that these two genera exhibit a distinct preference for freshwater habitats, particularly in southern China. However, further investigation into the distribution and diversity of the two genera in Guangdong and Guizhou Provinces remains insufficient. In this study, we conducted an analysis of four intriguing cheiroid hyphomycetes collected from flowing rivers in these two regions. Through morphological and phylogenetic analyses incorporating combined LSU, SSU, ITS, and tef1-α sequence data, we have identified them as a novel species in Dictyocheirospora (Dictyoc. submersa sp. nov.), two novel species in Dictyosporium (Dictyos. guangdongense sp. nov. and Dictyos. variabilisporum sp. nov.), and one previously documented species (Dictyos. digitatum). Specifically, the identification of Dictyos. guangdongense is primarily based on its distinct morphology, characterized by complanate, cheiroid, and brown to dark brown conidia, with a hyaline, short, and atrophied appendage arising from the apical cell of the outer row. In addition, the morphological distinctions between Dictyocheirospora and Dictyosporium are further clarified based on our new data. This study also highlights a few phylogenetic matters regarding Dictyosporiaceae.

6.
J Hazard Mater ; 469: 134100, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38522202

ABSTRACT

Contamination of oilfield chemicals (OFCs) by benzo[a]pyrene (B[a]P) is increasingly becoming a severe environmental security issue. There is an urgent need to develop a rapid and accurate method for B[a]P detection in OFCs. In this study, B[a]P hapten was designed using computer aided molecular design. A high-affinity, specific, and matrix-insensitive monoclonal antibody (mAb) with IC50 values of 6.77 ng/mL was obtained. Based on this mAb, we developed a rapid gold nanoparticle-based immunochromatographic strip assay (GICA) with double T-line mode for on-site detection of B[a]P in OFCs samples. The GICA exhibited excellent detection performance in OFCs samples with strong acidity, strong alkalinity, and deep color. Under optimal conditions, the proposed method detected B[a]P in OFCs at 0.42-300 mg/kg, and limit of detection was 0.23-1.07 mg/kg. The recovery rate was 88-106% with a coefficient of variation of 1.46-6.35%. Confirmed by natural positive OFCs samples and high-performance liquid chromatography, this GICA is accurate and reliable, with great potential for rapid and cost-effective on-site detection.


Subject(s)
Gold , Metal Nanoparticles , Gold/chemistry , Benzo(a)pyrene , Cost-Benefit Analysis , Oil and Gas Fields , Metal Nanoparticles/chemistry , Chromatography, Affinity , Immunoassay/methods , Antibodies, Monoclonal , Limit of Detection
7.
Molecules ; 28(22)2023 Nov 19.
Article in English | MEDLINE | ID: mdl-38005388

ABSTRACT

Photocatalytic membranes are typical multifunctional membranes that have emerged in recent years. The lack of active functional groups on the surface of membranes made of inert materials such as polyvinylidene fluoride(PVDF) makes it difficult to have a stable binding interaction with photocatalysts directly. Therefore, in this study, we developed a simple method to prepare NH2-UiO-66/BiOBr/PVDF(MUB) membranes for efficient dye treatment by grafting benzophenolic acid-functionalized NH2-UiO-66 onto the surface of membranes with photocatalytic properties under visible light irradiation using benzophenolic acid with photoinitiating ability as an anchor. The structural characteristics, photocatalytic properties, antifouling properties, and reusability of the composite membranes were investigated in subsequent experiments using a series of experiments and characterizations. The results showed that the benzophenone acid grafting method was stable and the nanoparticles were not easily dislodged. The MUB composite membrane achieved a higher dye degradation efficiency (99.2%) than the pristine PVDF membrane at 62.9% within a reaction time of 180 min. In addition, the composite membranes exhibited higher permeate fluxes for both pure and mixed dyes and also demonstrated outstanding water flux recovery (>96%) after the light self-cleaning cycle operation. This combination proved to improve the performance of the membranes instead of reducing them, increasing their durability and reusability, and helping to broaden the application areas of membrane filtration technology.

8.
Quant Imaging Med Surg ; 13(10): 6434-6445, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37869294

ABSTRACT

Background: Visually evaluating liver function is a hot topic in hepatology research. There are few reliable and practical visualization methods for evaluating the liver function in vivo in experimental studies. In this study, we established a multimodal imaging approach for in vivo liver function evaluation and compared healthy mice with chronic alcoholic liver injury (cALI) model mice to explore its potential applicability in experimental research. Methods: In vivo fluorescence imaging (IVFI) technology was utilized to visually represent the clearance of indocyanine green from the liver of both healthy mice and mice with cALI. The reserve liver function was evaluated via IVFI using the Cy5.5-galactosylated polylysine probe, which targets the asialoglycoprotein receptor of hepatocytes. Hepatic microcirculation was assessed through laser speckle perfusion imaging of hepatic blood perfusion. The liver microstructure was then investigated by in vivo confocal laser endomicroscopy imaging. Finally, hepatic asialoglycoprotein receptor expression, histology, and the levels of serum alanine aminotransferase and aspartate aminotransferase were measured. Results: In vivo multimodal imaging results intuitively and dynamically showed that indocyanine green clearance [mean ± standard deviation (SD): 30.83±14.71, 95% confidence interval (CI): 20.3 to 41.35], the fluorescence signal intensity (mean ± SD: 1,217.92±117.63; 95% CI: 1,148.38 to 1,290.84) and fluorescence aggregation area (mean ± SD: 5,855.80±1,271.81; 95% CI: 5,051.57 to 6,653.88) of Cy5.5-galactosylated polylysine targeting the asialoglycoprotein receptor, and hepatic blood perfusion (mean ± SD: 1,494.86±299.33; 95% CI: 1,316.98 to 1,690.16) in model mice were significantly lower than those in healthy mice (all P<0.001). Compared to healthy mice, the model mice exhibited a significant decline in liver asialoglycoprotein receptor expression (mean ± SD: 219.03±16.34; 95% CI: 208.97 to 230.69; P<0.001), increased serum alanine aminotransferase (mean ± SD: 149.70±47.89 U/L; 95% CI: 81.75 to 128.89; P=0.01) and aspartate aminotransferase levels (mean ± SD: 106.30±36.13 U/L; 95% CI: 122.01 to 180.17; P=0.021), hepatocyte swelling and deformation, disappearance of the hepatic cord structure, partial necrosis, and disintegration of hepatocytes. The imaging features of fluorescence signals in liver regions, hepatic blood perfusion and microstructure were biologically related to hepatic asialoglycoprotein receptor expression, serum indices of liver function, and histopathology in model mice. Conclusions: Utilizing in vivo multimodal imaging technology to assess liver function is a viable approach for experimental research, providing dynamic and intuitive visual evaluations in a rapid manner.

9.
Plants (Basel) ; 12(19)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37836225

ABSTRACT

Iron (Fe) is necessary for plant growth and development. The mechanism of uptake and translocation in Cadmium (Cd) is similar to iron, which shares iron transporters. Yellow stripe-like transporter (YSL) plays a pivotal role in transporting iron and other metal ions in plants. In this study, MsYSL6 and its promoter were cloned from leguminous forage alfalfa. The transient expression of MsYSL6-GFP indicated that MsYSL6 was localized to the plasma membrane and cytoplasm. The expression of MsYSL6 was induced in alfalfa by iron deficiency and Cd stress, which was further proved by GUS activity driven by the MsYSL6 promoter. To further identify the function of MsYSL6, it was heterologously overexpressed in tobacco. MsYSL6-overexpressed tobacco showed better growth and less oxidative damage than WT under Cd stress. MsYSL6 overexpression elevated Fe and Cd contents and induced a relatively high Fe translocation rate in tobacco under Cd stress. The results suggest that MsYSL6 might have a dual function in the absorption of Fe and Cd, playing a role in the competitive absorption between Fe and Cd. MsYSL6 might be a regulatory factor in plants to counter Cd stress. This study provides a novel gene for application in heavy metal enrichment or phytoremediation and new insights into plant tolerance to toxic metals.

10.
BMC Med Educ ; 23(1): 661, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37705019

ABSTRACT

BACKGROUND: Chinese universities are increasingly recruiting foreign students, and problem-based learning (PBL) is an effective approach to integrating those students. This study focuses on the role of intercultural sensitivity and group ethnic composition on the quality of group interaction in medical problem-based learning in China. METHODS: This paper reports an investigation of the differences in three types of group interaction (exploratory questions, cumulative reasoning, and handling conflict) among 139 s-year medical undergraduates from two backgrounds (Chinese and foreign) in a PBL setting. The roles of intercultural sensitivity, group ethnic composition, and students' personal characteristics including age, gender and ethnicity on students' perceptions of the three types of interaction were quantitatively analyzed. A 35-item questionnaire and demographic survey were administered to second year medical undergraduates. RESULTS: The results indicated that group ethnic composition was a significant negative predictor while intercultural sensitivity was a strong positive predictor of group interactions involving exploratory questions and cumulative reasoning. In addition, group heterogeneity in terms of age and ethnicity were significant predictors of group interaction. CONCLUSIONS: The findings of this study provide insights for strategically designing effective multiethnic group learning environments that encourage interaction and collaboration.


Subject(s)
Group Dynamics , Problem-Based Learning , Humans , Asian People , China , Ethnicity , Universities
11.
Cell Res ; 33(11): 835-850, 2023 11.
Article in English | MEDLINE | ID: mdl-37726403

ABSTRACT

Glycolytic intermediary metabolites such as fructose-1,6-bisphosphate can serve as signals, controlling metabolic states beyond energy metabolism. However, whether glycolytic metabolites also play a role in controlling cell fate remains unexplored. Here, we find that low levels of glycolytic metabolite 3-phosphoglycerate (3-PGA) can switch phosphoglycerate dehydrogenase (PHGDH) from cataplerosis serine synthesis to pro-apoptotic activation of p53. PHGDH is a p53-binding protein, and when unoccupied by 3-PGA interacts with the scaffold protein AXIN in complex with the kinase HIPK2, both of which are also p53-binding proteins. This leads to the formation of a multivalent p53-binding complex that allows HIPK2 to specifically phosphorylate p53-Ser46 and thereby promote apoptosis. Furthermore, we show that PHGDH mutants (R135W and V261M) that are constitutively bound to 3-PGA abolish p53 activation even under low glucose conditions, while the mutants (T57A and T78A) unable to bind 3-PGA cause constitutive p53 activation and apoptosis in hepatocellular carcinoma (HCC) cells, even in the presence of high glucose. In vivo, PHGDH-T57A induces apoptosis and inhibits the growth of diethylnitrosamine-induced mouse HCC, whereas PHGDH-R135W prevents apoptosis and promotes HCC growth, and knockout of Trp53 abolishes these effects above. Importantly, caloric restriction that lowers whole-body glucose levels can impede HCC growth dependent on PHGDH. Together, these results unveil a mechanism by which glucose availability autonomously controls p53 activity, providing a new paradigm of cell fate control by metabolic substrate availability.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , Tumor Suppressor Protein p53/metabolism , Serine/metabolism , Cell Line, Tumor
12.
Int J Mol Sci ; 24(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37511038

ABSTRACT

Iron(Fe) is a trace metal element necessary for plant growth, but excess iron is harmful to plants. Natural resistance-associated macrophage proteins (NRAMPs) are important for divalent metal transport in plants. In this study, we isolated the MsNRAMP2 (MN_547960) gene from alfalfa, the perennial legume forage. The expression of MsNRAMP2 is specifically induced by iron excess. Overexpression of MsNRAMP2 conferred transgenic tobacco tolerance to iron excess, while it conferred yeast sensitivity to excess iron. Together with the MsNRAMP2 gene, MsMYB (MN_547959) expression is induced by excess iron. Y1H indicated that the MsMYB protein could bind to the "CTGTTG" cis element of the MsNRAMP2 promoter. The results indicated that MsNRAMP2 has a function in iron transport and its expression might be regulated by MsMYB. The excess iron tolerance ability enhancement of MsNRAMP2 may be involved in iron transport, sequestration, or redistribution.


Subject(s)
Iron Overload , Nicotiana , Nicotiana/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Iron/metabolism , Medicago sativa/genetics , Iron Overload/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
13.
Analyst ; 148(17): 4166-4173, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37522178

ABSTRACT

Cadmium ions (Cd2+) are some of the major pollutants in oilfield chemicals. To reduce the pollution of oilfield chemicals, it is necessary to detect and control the content of Cd2+. In this study, we synthesized a highly sensitive and specific monoclonal antibody against Cd2+ with an IC50 of 1.97 ng mL-1 and no cross-reactivity. Based on this antibody, a colloidal gold immunoassay strip detection assay with an IC50 of 1 mg kg-1 and a detection range of 1.0-20 mg kg-1 in oilfield chemicals was developed. This assay could be completed in 20 min and can be used for Cd2+ on-site testing in oilfield chemicals and improve supervision efficiency in oil exploration and development.


Subject(s)
Cadmium , Gold Colloid , Gold Colloid/chemistry , Oil and Gas Fields , Immunoassay , Antibodies, Monoclonal
14.
MycoKeys ; 95: 163-188, 2023.
Article in English | MEDLINE | ID: mdl-37251991

ABSTRACT

Colletotrichum species are well-known plant pathogens, saprobes, endophytes, human pathogens and entomopathogens. However, little is known about Colletotrichum as endophytes of plants and cultivars including Citrusgrandis cv. "Tomentosa". In the present study, 12 endophytic Colletotrichum isolates were obtained from this host in Huazhou, Guangdong Province (China) in 2019. Based on morphology and combined multigene phylogeny [nuclear ribosomal internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (gapdh), chitin synthase 1 (chs-1), histone H3 (his3) actin (act), beta-tubulin (ß-tubulin) and glutamine synthetase (gs)], six Colletotrichum species were identified, including two new species, namely Colletotrichumguangdongense and C.tomentosae. Colletotrichumasianum, C.plurivorum, C.siamense and C.tainanense are identified as being the first reports on C.grandis cv. "Tomentosa" worldwide. This study is the first comprehensive study on endophytic Colletotrichum species on C.grandis cv. "Tomentosa" in China.

15.
Angew Chem Int Ed Engl ; 62(6): e202217130, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36511841

ABSTRACT

Transition metal-catalyzed enantioselective C-H activation of prochiral sulfoximines for non-annulated products remains a formidable challenge. We herein report iridium-catalyzed enantioselective C-H borylation of N-silyl diaryl sulfoximines using a well-designed chiral bidentate boryl ligand with a bulky side arm. This method is capable of accommodating a broad range of substrates under mild reaction conditions, affording a vast array of chiral sulfoximines with high enantioselectivities. We also demonstrated the synthetic utility on a preparative-scale C-H borylation for diverse downstream transformations, including the synthesis of chiral version of bioactive molecules. Computational studies showed that the bulky side arm of the ligand confers high regio- and enantioselectivity through steric effect.

16.
Acupunct Med ; 41(4): 215-223, 2023 08.
Article in English | MEDLINE | ID: mdl-36263700

ABSTRACT

OBJECTIVE: Acupuncture can improve the symptoms of alcohol-induced bodily injury and has been accepted by the World Health Organization. In this study, in vivo fluorescence imaging (IVFI) was applied to display and evaluate the effect of electroacupuncture (EA) on liver function (LF) in mice with chronic alcoholic liver injury (cALI). METHODS: IVFI of the Cy5.5-galactosylated polylysine (Cy5.5-GP) probe targeting the liver asialoglycoprotein receptor (ASGPR) and liver indocyanine green (ICG) clearance was performed to visually evaluate the effect of EA at ST36 and BL18 on liver reserve function and hepatic metabolism in mice with cALI. In addition, changes in ASGPR expression, serum indexes of LF, and hepatic morphology were observed. RESULTS: After EA at ST36 and BL18, the ASGPR-targeted fluorescence signals (FS) in the liver increased significantly in cALI mice (p < 0.05) and exhibited relationships with liver ASGPR expression, liver ICG clearance, liver histology, and serum marker levels of LF in cALI mice undergoing EA intervention. CONCLUSIONS: As displayed by IVFI, EA at ST36 and BL18 appears to improve liver reserve function and inhibit the development of liver injury in mice with cALI. EA may have potential as a treatment strategy to protect against ALI.


Subject(s)
Electroacupuncture , Mice , Animals , Acupuncture Points , Liver/diagnostic imaging , Liver/metabolism , Optical Imaging
17.
Gastric Cancer ; 26(2): 169-186, 2023 03.
Article in English | MEDLINE | ID: mdl-36284068

ABSTRACT

BACKGROUND: LIN28B plays a critical role in the Warburg effect. However, its underlying mechanism remains elusive. Recently, it has been reported that LIN28B could collaborate with IGF2BP3, which can bind to m6A-modified c-MYC transcripts. Therefore, this study investigated if LIN28B recognises methylated c-MYC mRNA to promote the Warburg effect in gastric cancer. METHODS: Effects of LIN28B on gastric cancer were confirmed in vitro and in vivo. On the basis of bioinformatics analysis, the association between LIN28B and c-MYC mRNA was shown using RNA immunoprecipitation (RIP) and luciferase reporter assays. The role of m6A was identified by RNA pull-down assays. We further performed RIP-seq to search for long non-coding RNAs (lncRNAs) participating in the LIN28B binding process. Chromatin immunoprecipitation was used to show the impact of c-MYC on transcription of LIN28B and lncRNAs. RESULTS: LIN28B was identified to stabilize c-MYC mRNA by recognizing m6A. Furthermore, the interaction between c-MYC mRNA and LIN28B is speculated to be supported by LOC101929709, which binds to both LIN28B and IGF2BP3. Functional experiments revealed that LOC101929709 promotes the proliferation, migration and glycolysis of gastric cancer. Mechanistically, LOC101929709 enriched in the cytoplasm helps LIN28B stabilize c-MYC mRNA. Moreover, c-MYC promoted the transcription of both LOC101929709 and LIN28B. Additionally, LOC101929709 also activated the PI3K/AKT pathway. CONCLUSIONS: The c-MYC/LOC101929709/LIN28B axis promotes aerobic glycolysis and tumour progression. Thus, LOC101929709 can be a novel potential target for gastric cancer treatment.


Subject(s)
RNA, Long Noncoding , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , RNA, Messenger , RNA, Long Noncoding/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , RNA-Binding Proteins/genetics
18.
Nat Metab ; 4(10): 1369-1401, 2022 10.
Article in English | MEDLINE | ID: mdl-36217034

ABSTRACT

The activity of 5'-adenosine monophosphate-activated protein kinase (AMPK) is inversely correlated with the cellular availability of glucose. When glucose levels are low, the glycolytic enzyme aldolase is not bound to fructose-1,6-bisphosphate (FBP) and, instead, signals to activate lysosomal AMPK. Here, we show that blocking FBP binding to aldolase with the small molecule aldometanib selectively activates the lysosomal pool of AMPK and has beneficial metabolic effects in rodents. We identify aldometanib in a screen for aldolase inhibitors and show that it prevents FBP from binding to v-ATPase-associated aldolase and activates lysosomal AMPK, thereby mimicking a cellular state of glucose starvation. In male mice, aldometanib elicits an insulin-independent glucose-lowering effect, without causing hypoglycaemia. Aldometanib also alleviates fatty liver and nonalcoholic steatohepatitis in obese male rodents. Moreover, aldometanib extends lifespan and healthspan in both Caenorhabditis elegans and mice. Taken together, aldometanib mimics and adopts the lysosomal AMPK activation pathway associated with glucose starvation to exert physiological roles, and might have potential as a therapeutic for metabolic disorders in humans.


Subject(s)
Insulins , Starvation , Humans , Male , Mice , Animals , AMP-Activated Protein Kinases/metabolism , Glucose/metabolism , Fructose-Bisphosphate Aldolase/metabolism , Lysosomes/metabolism , Starvation/metabolism , Adenosine Triphosphatases/metabolism , Caenorhabditis elegans , Adenosine Monophosphate/metabolism , Fructose/metabolism , Insulins/metabolism
19.
Zhen Ci Yan Jiu ; 47(6): 549-52, 2022 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-35764524

ABSTRACT

This paper introduced the research ideas and methods for the development of the national standard, "Pure moxa stick". According to the orientation of product standard and related documents, on the basis of extensive investigation and in consultation with manufacturers and experts, the problems encountered in this standard development were solved. The general technical requirements were specified in association with the basic experimental data. The technical requirements should not only conform to the current technological status of moxa sticks production, but also present a certain of innovation. The innovation of this standard lies in the concepts of the ratio of leaves to floss, the ratio of whole plant to floss, density, etc. Besides, the main technical requirements of "Pure moxa stick" have been specified, i.e. material, shape and structure, combustion characteristics, physical and chemical characteristics. The development of national standard "Pure moxa stick" contributes to the favorable exploration and practice of the standardization of traditional Chinese medicine and provides the effective reference for the further stan-dardization of acupuncture and moxibustion.


Subject(s)
Acupuncture Therapy , Moxibustion , Medicine, Chinese Traditional
20.
Front Cell Infect Microbiol ; 12: 812345, 2022.
Article in English | MEDLINE | ID: mdl-35531342

ABSTRACT

The Orang Asli (OA) of Malaysia have been relatively understudied where little is known about their oral and gut microbiomes. As human health is closely intertwined with the human microbiome, this study first assessed the cardiometabolic health in four OA communities ranging from urban, rural to semi-nomadic hunter-gatherers. The urban Temuan suffered from poorer cardiometabolic health while rural OA communities were undergoing epidemiological transition. The oral microbiota of the OA were characterised by sequencing the V4 region of the 16S rRNA gene. The OA oral microbiota were unexpectedly homogenous, with comparably low alpha diversity across all four communities. The rural Jehai and Temiar PP oral microbiota were enriched for uncharacterised bacteria, exhibiting potential for discoveries. This finding also highlights the importance of including under-represented populations in large cohort studies. The Temuan oral microbiota were also elevated in opportunistic pathogens such as Corynebacterium, Prevotella, and Mogibacterium, suggesting possible oral dysbiosis in these urban settlers. The semi-nomadic Jehai gut microbiota had the highest alpha diversity, while urban Temuan exhibited the lowest. Rural OA gut microbiota were distinct from urban-like microbiota and were elevated in bacteria genera such as Prevotella 2, Prevotella 9, Lachnospiraceae ND3007, and Solobacterium. Urban Temuan microbiota were enriched in Odoribacter, Blautia, Parabacetroides, Bacteroides and Ruminococcacecae UCG-013. This study brings to light the current health trend of these indigenous people who have minimal access to healthcare and lays the groundwork for future, in-depth studies in these populations.


Subject(s)
Cardiovascular Diseases , Gastrointestinal Microbiome , Microbiota , Bacteria/genetics , Gastrointestinal Microbiome/genetics , Humans , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...