Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
BMC Med Imaging ; 24(1): 103, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702626

ABSTRACT

OBJECTIVE: This study aimed to identify features of white matter network attributes based on diffusion tensor imaging (DTI) that might lead to progression from mild cognitive impairment (MCI) and construct a comprehensive model based on these features for predicting the population at high risk of progression to Alzheimer's disease (AD) in MCI patients. METHODS: This study enrolled 121 MCI patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Among them, 36 progressed to AD after four years of follow-up. A brain network was constructed for each patient based on white matter fiber tracts, and network attribute features were extracted. White matter network features were downscaled, and white matter markers were constructed using an integrated downscaling approach, followed by forming an integrated model with clinical features and performance evaluation. RESULTS: APOE4 and ADAS scores were used as independent predictors and combined with white matter network markers to construct a comprehensive model. The diagnostic efficacy of the comprehensive model was 0.924 and 0.919, sensitivity was 0.864 and 0.900, and specificity was 0.871 and 0.815 in the training and test groups, respectively. The Delong test showed significant differences (P < 0.05) in the diagnostic efficacy of the combined model and APOE4 and ADAS scores, while there was no significant difference (P > 0.05) between the combined model and white matter network biomarkers. CONCLUSIONS: A comprehensive model constructed based on white matter network markers can identify MCI patients at high risk of progression to AD and provide an adjunct biomarker helpful in early AD detection.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Diffusion Tensor Imaging , Disease Progression , White Matter , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , White Matter/diagnostic imaging , White Matter/pathology , Diffusion Tensor Imaging/methods , Female , Male , Aged , Aged, 80 and over , Sensitivity and Specificity , Apolipoprotein E4/genetics
2.
Sci Rep ; 14(1): 11760, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783014

ABSTRACT

This study aimed to develop an optimal radiomics model for preoperatively predicting microsatellite instability (MSI) in patients with rectal cancer (RC) based on multiparametric magnetic resonance imaging. The retrospective study included 308 RC patients who did not receive preoperative antitumor therapy, among whom 51 had MSI. Radiomics features were extracted and dimensionally reduced from T2-weighted imaging (T2WI), T1-weighted imaging (T1WI), diffusion-weighted imaging (DWI), and T1-weighted contrast enhanced (T1CE) images for each patient, and the features of each sequence were combined. Multifactor logistic regression was used to screen the optimal feature set for each combination. Different machine learning methods were applied to construct predictive MSI status models. Relative standard deviation values were determined to evaluate model performance and select the optimal model. Receiver operating characteristic (ROC) curve, calibration curve, and decision curve analyses were performed to evaluate model performance. The model constructed using the k-nearest neighbor (KNN) method combined with T2WI and T1CE images performed best. The area under the curve values for prediction of MSI with this model were 0.849 (0.804-0.887), with a sensitivity of 0.784 and specificity of 0.805. The Delong test showed no significant difference in diagnostic efficacy between the KNN-derived model and the traditional logistic regression model constructed using T1WI + DWI + T1CE and T2WI + T1WI + DWI + T1CE data (P > 0.05) and the diagnostic efficiency of the KNN-derived model was slightly better than that of the traditional model. From ROC curve analysis, the KNN-derived model significantly distinguished patients at low- and high-risk of MSI with the optimal threshold of 0.2, supporting the clinical applicability of the model. The model constructed using the KNN method can be applied to noninvasively predict MSI status in RC patients before surgery based on radiomics features from T2WI and T1CE images. Thus, this method may provide a convenient and practical tool for formulating treatment strategies and optimizing individual clinical decision-making for patients with RC.


Subject(s)
Magnetic Resonance Imaging , Microsatellite Instability , Rectal Neoplasms , Humans , Rectal Neoplasms/genetics , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/surgery , Rectal Neoplasms/pathology , Female , Male , Middle Aged , Retrospective Studies , Aged , Magnetic Resonance Imaging/methods , ROC Curve , Adult , Machine Learning , Preoperative Period , Radiomics
3.
Sci Rep ; 14(1): 12081, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802526

ABSTRACT

Early assessment and accurate staging of liver fibrosis may be of great help for clinical diagnosis and treatment in patients with chronic hepatitis B (CHB). We aimed to identify serum markers and construct a machine learning (ML) model to reliably predict the stage of fibrosis in CHB patients. The clinical data of 618 CHB patients between February 2017 and September 2021 from Zhejiang Provincial People's Hospital were retrospectively analyzed, and these data as a training cohort to build the model. Six ML models were constructed based on logistic regression, support vector machine, Bayes, K-nearest neighbor, decision tree (DT) and random forest by using the maximum relevance minimum redundancy (mRMR) and gradient boosting decision tree (GBDT) dimensionality reduction selected features on the training cohort. Then, the resampling method was used to select the optimal ML model. In addition, a total of 571 patients from another hospital were used as an external validation cohort to verify the performance of the model. The DT model constructed based on five serological biomarkers included HBV-DNA, platelet, thrombin time, international normalized ratio and albumin, with the area under curve (AUC) values of the DT model for assessment of liver fibrosis stages (F0-1, F2, F3 and F4) in the training cohort were 0.898, 0.891, 0.907 and 0.944, respectively. The AUC values of the DT model for assessment of liver fibrosis stages (F0-1, F2, F3 and F4) in the external validation cohort were 0.906, 0.876, 0.931 and 0.933, respectively. The simulated risk classification based on the cutoff value showed that the classification performance of the DT model in distinguishing hepatic fibrosis stages can be accurately matched with pathological diagnosis results. ML model of five serum markers allows for accurate diagnosis of hepatic fibrosis stages, and beneficial for the clinical monitoring and treatment of CHB patients.


Subject(s)
Biomarkers , Hepatitis B, Chronic , Liver Cirrhosis , Machine Learning , Humans , Liver Cirrhosis/blood , Liver Cirrhosis/diagnosis , Liver Cirrhosis/pathology , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/pathology , Biomarkers/blood , Female , Male , Adult , Middle Aged , Retrospective Studies
4.
IEEE Trans Image Process ; 33: 2044-2057, 2024.
Article in English | MEDLINE | ID: mdl-38470589

ABSTRACT

3D shape segmentation is a fundamental and crucial task in the field of image processing and 3D shape analysis. To segment 3D shapes using data-driven methods, a fully labeled dataset is usually required. However, obtaining such a dataset can be a daunting task, as manual face-level labeling is both time-consuming and labor-intensive. In this paper, we present a semi-supervised framework for 3D shape segmentation that uses a small, fully labeled set of 3D shapes, as well as a weakly labeled set of 3D shapes with sparse scribble labels. Our framework first employs an auxiliary network to generate initial fully labeled segmentation labels for the sparsely labeled dataset, which helps in training the primary network. During training, the self-refine module uses increasingly accurate predictions of the primary network to improve the labels generated by the auxiliary network. Our proposed method achieves better segmentation performance than previous semi-supervised methods, as demonstrated by extensive benchmark tests, while also performing comparably to supervised methods.

5.
J Cancer Res Clin Oncol ; 150(3): 147, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512406

ABSTRACT

OBJECTIVE: To construct a multi-region MRI radiomics model for predicting pathological complete response (pCR) in breast cancer (BCa) patients who received neoadjuvant chemotherapy (NACT) and provide a theoretical basis for the peritumoral microenvironment affecting the efficacy of NACT. METHODS: A total of 133 BCa patients who received NACT, including 49 with confirmed pCR, were retrospectively analyzed. The radiomics features of the intratumoral region, peritumoral region, and background parenchymal enhancement (BPE) were extracted, and the most relevant features were obtained after dimensional reduction. Then, combining different areas, multivariate logistic regression analysis was used to select the optimal feature set, and six different machine learning models were used to predict pCR. The optimal model was selected, and its performance was evaluated using receiver operating characteristic (ROC) analysis. SHAP analysis was used to examine the relationship between the features of the model and pCR. RESULTS: For signatures constructed using three individual regions, BPE provided the best predictions of pCR, and the diagnostic performance of the intratumoral and peritumoral regions improved after adding the BPE signature. The radiomics signature from the combination of all the three regions with the XGBoost machine learning algorithm provided the best predictions of pCR based on AUC (training set: 0.891, validation set: 0.861), sensitivity (training set: 0.882, validation set: 0.800), and specificity (training set: 0.847, validation set: 0.84). SHAP analysis demonstrated that LZ_log.sigma.2.0.mm.3D_glcm_ClusterShade_T12 made the greatest contribution to the predictions of this model. CONCLUSION: The addition of the BPE MRI signature improved the prediction of pCR in BCa patients who received NACT. These results suggest that the features of the peritumoral microenvironment are related to the efficacy of NACT.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Neoadjuvant Therapy/methods , Retrospective Studies , Radiomics , Magnetic Resonance Imaging/methods , Machine Learning , Tumor Microenvironment
6.
Article in English | MEDLINE | ID: mdl-38386586

ABSTRACT

Identifying points of interest (POIs) on the surface of 3D shapes is a significant challenge in geometric processing research. The complex connection between POIs and their geometric descriptors, combined with the small percentage of POIs on the shape, makes detecting POIs on any given 3D shape a highly challenging task. Existing methods directly detect POIs from the entire 3D shape, resulting in low efficiency and accuracy. Therefore, we propose a novel multi-modal POI detection method using a coarse-to-fine approach, with the key idea of reducing data complexity and enabling more efficient and accurate subsequent POI detection by first identifying and processing important regions on the 3D shape. It first obtains important areas on the 3D shape through 2D projected images, then processes points within these regions using attention mechanisms. Extensive experiments demonstrate that our method outperforms existing POI detection techniques.

7.
BMC Med Imaging ; 24(1): 22, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245712

ABSTRACT

BACKGROUND: Non-invasive identification of breast cancer (BCa) patients with pathological complete response (pCR) after neoadjuvant chemotherapy (NACT) is critical to determine appropriate surgical strategies and guide the resection range of tumor. This study aimed to examine the effectiveness of a nomogram created by combining radiomics signatures from both intratumoral and derived tissues with clinical characteristics for predicting pCR after NACT. METHODS: The clinical data of 133 BCa patients were analyzed retrospectively and divided into training and validation sets. The radiomics features for Intratumoral, peritumoral, and background parenchymal enhancement (BPE) in the training set were dimensionalized. Logistic regression analysis was used to select the optimal feature set, and a radiomics signature was constructed using a decision tree. The signature was combined with clinical features to build joint models and generate nomograms. The area under curve (AUC) value of receiver operating characteristic (ROC) curve was then used to assess the performance of the nomogram and independent predictors. RESULTS: Among single region, intratumoral had the best predictive value. The diagnostic performance of the intratumoral improved after adding the BPE features. The AUC values of the radiomics signature were 0.822 and 0.82 in the training and validation sets. Multivariate logistic regression analysis revealed that age, ER, PR, Ki-67, and radiomics signature were independent predictors of pCR in constructing a nomogram. The AUC of the nomogram in the training and validation sets were 0.947 and 0.933. The DeLong test showed that the nomogram had statistically significant differences compared to other independent predictors in both the training and validation sets (P < 0.05). CONCLUSION: BPE has value in predicting the efficacy of neoadjuvant chemotherapy, thereby revealing the potential impact of tumor growth environment on the efficacy of neoadjuvant chemotherapy.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Nomograms , Retrospective Studies , Neoadjuvant Therapy , Radiomics
8.
Abdom Radiol (NY) ; 49(1): 117-130, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37819438

ABSTRACT

OBJECTIVE: To construct and validate a multi-dimensional model based on multiple machine leaning algorithms to predict PCLM using multi-parameter magnetic resonance (MRI) sequences with clinical and imaging parameters. METHODS: A total of 148 PDAC retrospectively examined patients were classified as metastatic or non-metastatic based on results at 3 months after surgery. The radiomics features of the primary tumor were extracted from T2WI images, followed by dimension reduction. Then, multiple machine learning methods were used to construct models. Independent predictors were also screened using multifactor logistic regression and a nomogram was constructed in combination with the radiomics model. Area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA) were used to assess the accuracy and reliability of the nomogram. RESULTS: The diagnostic efficacy of the radiomics model in the training and test set was 0.822 and 0.803, sensitivity was 0.742 and 0.692, and specificity was 0.792 and 0.875, respectively. The diagnostic efficacy of the nomogram in the training and test set was 0.866 and 0.832. CONCLUSION: A radiomics nomogram based on machine learning improved the accuracy of predicting PCLM and may be useful for early preoperative diagnosis.


Subject(s)
Carcinoma, Pancreatic Ductal , Liver Neoplasms , Pancreatic Neoplasms , Humans , Radiomics , Cohort Studies , Reproducibility of Results , Retrospective Studies , Magnetic Resonance Imaging , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/surgery , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/surgery , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Machine Learning , Magnetic Resonance Spectroscopy
9.
Front Aging Neurosci ; 15: 1256228, 2023.
Article in English | MEDLINE | ID: mdl-38020772

ABSTRACT

Objective: Coronary artery disease (CAD) usually coexists with subclinical cerebrovascular diseases given the systematic nature of atherosclerosis. In this study, our objective was to predict the progression of white matter hyperintensity (WMH) and find its risk factors in CAD patients using the coronary artery calcium (CAC) score. We also investigated the relationship between the CAC score and the WMH volume in different brain regions. Methods: We evaluated 137 CAD patients with WMH who underwent coronary computed tomography angiography (CCTA) and two magnetic resonance imaging (MRI) scans from March 2018 to February 2023. Patients were categorized into progressive (n = 66) and nonprogressive groups (n = 71) by the change in WMH volume from the first to the second MRI. We collected demographic, clinical, and imaging data for analysis. Independent risk factors for WMH progression were identified using logistic regression. Three models predicting WMH progression were developed and assessed. Finally, patients were divided into groups based on their total CAC score (0 to <100, 100 to 400, and > 400) to compare their WMH changes in nine brain regions. Results: Alcohol abuse, maximum pericoronary fat attenuation index (pFAI), CT-fractional flow reserve (CT-FFR), and CAC risk grade independently predicted WMH progression (p < 0.05). The logistic regression model with all four variables performed best (training: AUC = 0.878, 95% CI: 0.790, 0.938; validation: AUC = 0.845, 95% CI: 0.734, 0.953). An increased CAC risk grade came with significantly higher WMH volume in the total brain, corpus callosum, and frontal, parietal and occipital lobes (p < 0.05). Conclusion: This study demonstrated the application of the CCTA-derived CAC score to predict WMH progression in elderly people (≥60 years) with CAD.

10.
J Mater Chem B ; 11(46): 11073-11081, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37986572

ABSTRACT

Radiomic features have demonstrated reliable outcomes in tumor grading and detecting precancerous lesions in medical imaging analysis. However, the repeatability and stability of these features have faced criticism. In this study, we aim to enhance the repeatability and stability of radiomic features by introducing a novel CT-responsive hydrogel material. The newly developed CT-responsive hydrogel, mineralized by in situ metal ions, exhibits exceptional repeatability, stability, and uniformity. Moreover, by adjusting the concentration of metal ions, it achieves remarkable CT similarity comparable to that of human organs on CT scans. To create a phantom, the hydrogel was molded into a universal model, displaying controllable CT values ranging from 53 HU to 58 HU, akin to human liver tissue. Subsequently, 1218 radiomic features were extracted from the CT-responsive hydrogel organ simulation phantom. Impressively, 85-97.2% of the extracted features exhibited good repeatability and stability during coefficient of variability analysis. This finding emphasizes the potential of CT-responsive hydrogel in consistently extracting the same features, providing a novel approach to address the issue of repeatability in radiomic features.


Subject(s)
Hydrogels , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Ions
11.
Eur Neurol ; 86(6): 408-417, 2023.
Article in English | MEDLINE | ID: mdl-37926082

ABSTRACT

INTRODUCTION: The aim of the study was to construct and validate a nomogram that combines diffusion tensor imaging (DTI) parameters and clinically relevant features for predicting the progression of mild cognitive impairment (MCI) to Alzheimer's disease (AD). METHOD: A retrospective analysis was conducted on the MRI and clinical data of 121 MCI patients, of whom 32 progressed to AD during a 4-year follow-up period. The MCI patients were divided into training and validation sets at a ratio of 7:3. DTI features were extracted from MCI patient data in the training set, and their dimensionality was reduced to construct a radiomics signature (RS). Then, combining the RS with independent predictors of MCI disease progression, a joint model was constructed, and a nomogram was generated. Finally, the area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA) were used to evaluate the diagnostic and clinical efficacy of the nomogram based on the data from the validation set. RESULT: The AUCs of the RS in the training and validation sets were 0.81 and 0.84, with sensitivities of 0.87 and 0.78 and specificities of 0.71 and 0.81, respectively. Multiple logistic regression analysis showed that the RS, clinical dementia rating scale score, and Alzheimer's disease assessment scale score were the independent predictors of progression and were thus used to construct the nomogram. The AUCs of the nomogram in the training and validation sets were 0.89 and 0.91, respectively, with sensitivities of 0.78 and 0.89 and specificities of 0.90 and 0.88, respectively. DCA showed that the nomogram was the most valuable model for predicting the progression of MCI to AD and that it provided greater net benefits than other analysed models. CONCLUSION: Changes in white matter fibre bundles can serve as predictive imaging markers for MCI disease progression, and the combination of white matter DTI features and relevant clinical features can be used to construct a nomogram with important predictive value for MCI disease progression.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Diffusion Tensor Imaging , Nomograms , Retrospective Studies , Cognitive Dysfunction/diagnostic imaging , Disease Progression
12.
Brain Imaging Behav ; 17(6): 764-777, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37752311

ABSTRACT

The microstructural characteristics of white and gray matter in mild cognitive impairment (MCI) and the early-stage of Alzheimer's disease (AD) remain unclear. This study aimed to systematically identify the microstructural damages of MCI/AD in studies using neurite orientation dispersion and density imaging (NODDI), and explore their correlations with cognitive performance. Multiple databases were searched for eligible studies. The 10 eligible NODDI studies were finally included. Patients with MCI/AD showed overall significant reductions in neurite density index (NDI) of specific white matter structures in bilateral hemispheres (left hemisphere: -0.40 [-0.53, -0.27], P < 0.001; right: -0.33 [-0.47, -0.19], P < 0.001), involving the bilateral superior longitudinal fasciculus (SLF), uncinate fasciculus (UF), the left posterior thalamic radiation (PTR), and the left cingulum. White matter regions exhibited significant increased orientation dispersion index (ODI) (left: 0.25 [0.02, 0.48], P < 0.05; right: 0.27 [0.07, 0.46], P < 0.05), including the left cingulum, the right UF, and the bilateral parahippocampal cingulum (PHC), and PTR. Additionally, the ODI of gray matter showed significant reduction in bilateral hippocampi (left: -0.97 [-1.42, -0.51], P < 0.001; right: -0.90 [-1.35, -0.45], P < 0.001). The cognitive performance in MCI/AD was significantly associated with NDI (r = 0.50, P < 0.001). Our findings highlight the microstructural changes in MCI/AD were characterized by decreased fiber orientation dispersion in the hippocampus, and decreased neurite density and increased fiber orientation dispersion in specific white matter tracts, including the cingulum, UF, and PTR. Moreover, the decreased NDI may indicate the declined cognitive level of MCI/AD patients.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , White Matter , Humans , Brain/diagnostic imaging , Gray Matter/diagnostic imaging , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/complications , Diffusion Tensor Imaging/methods , Magnetic Resonance Imaging , White Matter/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/complications
13.
Cancer Imaging ; 23(1): 88, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37723592

ABSTRACT

BACKGROUND: The current study aimed to construct and validate a magnetic resonance imaging (MRI)-based radiomics nomogram to predict tumor protein p53 gene status in rectal cancer patients using machine learning. METHODS: Clinical and imaging data from 300 rectal cancer patients who underwent radical resections were included in this study, and a total of 166 patients with p53 mutations according to pathology reports were included in these patients. These patients were allocated to the training (n = 210) or validation (n = 90) cohorts (7:3 ratio) according to the examination time. Using the training data set, the radiomic features of primary tumor lesions from T2-weighted images (T2WI) of each patient were analyzed by dimensionality reduction. Multivariate logistic regression was used to screen predictive features, which were combined with a radiomics model to construct a nomogram to predict p53 gene status. The accuracy and reliability of the nomograms were assessed in both training and validation data sets using receiver operating characteristic (ROC) curves. RESULTS: Using the radiomics model with the training and validation cohorts, the diagnostic efficacies were 0.828 and 0.795, the sensitivities were 0.825 and 0.891, and the specificities were 0.722 and 0.659, respectively. Using the nomogram with the training and validation data sets, the diagnostic efficacies were 0.86 and 0.847, the sensitivities were 0.758 and 0.869, and the specificities were 0.833 and 0.75, respectively. CONCLUSIONS: The radiomics nomogram based on machine learning was able to predict p53 gene status and facilitate preoperative molecular-based pathological diagnoses.


Subject(s)
Nomograms , Rectal Neoplasms , Humans , Reproducibility of Results , Tumor Suppressor Protein p53/genetics , Magnetic Resonance Imaging , Machine Learning , Mutation , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/genetics
14.
BMC Neurol ; 23(1): 313, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37648961

ABSTRACT

BACKGROUND: Cardiovascular diseases have been considered the primary cause of disability and death worldwide. Coronary artery calcium (CAC) is an important indicator of the severity of coronary atherosclerosis. This study is aimed to investigate the relationship between CAC and white matter hyperintensity (WMH) in the context of diagnostic utility. METHODS: A retrospective analysis was conducted on 342 patients with a diagnosis of WMH on magnetic resonance images (MRI) who also underwent chest computed tomography (CT) scans. WMH volumes were automatically measured using a lesion prediction algorithm. Subjects were divided into four groups based on the CAC score obtained from chest CT scans. A multilevel mixed-effects linear regression model considering conventional vascular risk factors assessed the association between total WMH volume and CAC score. RESULTS: Overall, participants with coronary artery calcium (CAC score > 0) had larger WMH volumes than those without calcium (CAC score = 0), and WMH volumes were statistically different between the four CAC score groups, with increasing CAC scores, the volume of WMH significantly increased. In the linear regression model 1 of the high CAC score group, for every 1% increase in CAC score, the WMH volume increases by 2.96%. After including other covariates in model 2 and model 3, the ß coefficient in the high CAC group remains higher than in the low and medium CAC score groups. CONCLUSION: In elderly adults, the presence and severity of CAC is related to an increase in WMH volume. Our findings suggest an association between two different vascular bed diseases in addition to traditional vascular risk factors, possibly indicating a comorbid mechanism.


Subject(s)
Leukoaraiosis , Vascular Diseases , White Matter , Adult , Aged , Humans , Calcium , Coronary Vessels , Retrospective Studies , White Matter/diagnostic imaging , Risk Factors
15.
Aging Clin Exp Res ; 35(8): 1721-1730, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37405620

ABSTRACT

PURPOSE: To establish a model for predicting mild cognitive impairment (MCI) progression to Alzheimer's disease (AD) using morphological features extracted from a joint analysis of voxel-based morphometry (VBM) and surface-based morphometry (SBM). METHODS: We analyzed data from 121 MCI patients from the Alzheimer's Disease Neuroimaging Initiative, 32 of whom progressed to AD during a 4-year follow-up period and were classified as the progression group, while the remaining 89 were classified as the non-progression group. Patients were divided into a training set (n = 84) and a testing set (n = 37). Morphological features measured by VBM and SBM were extracted from the cortex of the training set and dimensionally reduced to construct morphological biomarkers using machine learning methods, which were combined with clinical data to build a multimodal combinatorial model. The model's performance was evaluated using receiver operating characteristic curves on the testing set. RESULTS: The Alzheimer's Disease Assessment Scale (ADAS) score, apolipoprotein E (APOE4), and morphological biomarkers were independent predictors of MCI progression to AD. The combinatorial model based on the independent predictors had an area under the curve (AUC) of 0.866 in the training set and 0.828 in the testing set, with sensitivities of 0.773 and 0.900 and specificities of 0.903 and 0.747, respectively. The number of MCI patients classified as high-risk for progression to AD was significantly different from those classified as low-risk in the training set, testing set, and entire dataset, according to the combinatorial model (P < 0.05). CONCLUSION: The combinatorial model based on cortical morphological features can identify high-risk MCI patients likely to progress to AD, potentially providing an effective tool for clinical screening.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/psychology , Neuroimaging/methods , Machine Learning , Biomarkers , Disease Progression , Magnetic Resonance Imaging/methods
16.
Article in English | MEDLINE | ID: mdl-37030768

ABSTRACT

Geometric deep learning has sparked a rising interest in computer graphics to perform shape understanding tasks, such as shape classification and semantic segmentation. When the input is a polygonal surface, one has to suffer from the irregular mesh structure. Motivated by the geometric spectral theory, we introduce Laplacian2Mesh, a novel and flexible convolutional neural network (CNN) framework for coping with irregular triangle meshes (vertices may have any valence). By mapping the input mesh surface to the multi-dimensional Laplacian-Beltrami space, Laplacian2Mesh enables one to perform shape analysis tasks directly using the mature CNNs, without the need to deal with the irregular connectivity of the mesh structure. We further define a mesh pooling operation such that the receptive field of the network can be expanded while retaining the original vertex set as well as the connections between them. Besides, we introduce a channel-wise self-attention block to learn the individual importance of feature ingredients. Laplacian2Mesh not only decouples the geometry from the irregular connectivity of the mesh structure but also better captures the global features that are central to shape classification and segmentation. Extensive tests on various datasets demonstrate the effectiveness and efficiency of Laplacian2Mesh, particularly in terms of the capability of being vulnerable to noise to fulfill various learning tasks.

17.
BMC Cancer ; 23(1): 365, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37085830

ABSTRACT

OBJECTIVE: In this study, we aimed to investigate the predictive efficacy of magnetic resonance imaging (MRI) radiomics features at different time points of neoadjuvant therapy for rectal cancer in patients with pathological complete response (pCR). Furthermore, we aimed to develop and validate a radiomics space-time model (RSTM) using machine learning for artificial intelligence interventions in predicting pCR in patients. METHODS: Clinical and imaging data of 83 rectal cancer patients were retrospectively analyzed, and the patients were classified as pCR and non-pCR patients according to their postoperative pathological results. All patients received one MRI examination before and after neoadjuvant therapy to extract radiomics features, including pre-treatment, post-treatment, and delta features. Delta features were defined by the ratio of the difference between the pre- and the post-treatment features to the pre-treatment feature. After feature dimensionality reduction based on the above three feature types, the RSTM was constructed using machine learning methods, and its performance was evaluated using the area under the curve (AUC). RESULTS: The AUC values of the individual basic models constructed by pre-treatment, post-treatment, and delta features were 0.771, 0.681, and 0.871, respectively. Their sensitivity values were 0.727, 0.864, and 0.909, respectively, and their specificity values were 0.803, 0.492, and 0.656, respectively. The AUC, sensitivity, and specificity values of the combined basic model constructed by combining pre-treatment, post-treatment, and delta features were 0.901, 0.909, and 0.803, respectively. The AUC, sensitivity, and specificity values of the RSTM constructed using the K-Nearest Neighbor (KNN) classifier on the basis of the combined basic model were 0.944, 0.871, and 0.983, respectively. The Delong test showed that the performance of RSTM was significantly different from that of pre-treatment, post-treatment, and delta models (P < 0.05) but not significantly different from the combined basic model of the three (P > 0.05). CONCLUSIONS: The RSTM constructed using the KNN classifier based on the combined features of before and after neoadjuvant therapy and delta features had the best predictive efficacy for pCR of neoadjuvant therapy. It may emerge as a new clinical tool to assist with individualized management of rectal cancer patients.


Subject(s)
Neoadjuvant Therapy , Rectal Neoplasms , Humans , Neoadjuvant Therapy/methods , Artificial Intelligence , Retrospective Studies , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/therapy , Rectal Neoplasms/pathology , Magnetic Resonance Imaging/methods , Machine Learning
18.
J Nucl Cardiol ; 30(5): 1838-1850, 2023 10.
Article in English | MEDLINE | ID: mdl-36859595

ABSTRACT

BACKGROUND: This study aimed to predict myocardial ischemia (MIS) by constructing models with imaging features, CT-fractional flow reserve (CT-FFR), pericoronary fat attenuation index (pFAI), and radiomics based on coronary computed tomography angiography (CCTA). METHODS AND RESULTS: This study included 96 patients who underwent CCTA and single photon emission computed tomography-myocardial perfusion imaging (SPECT-MPI). According to SPECT-MPI results, there were 72 vessels with MIS in corresponding supply area and 105 vessels with no-MIS. The conventional model [lesion length (LL), MDS (maximum stenosis diameter × 100% / reference vessel diameter), MAS (maximum stenosis area × 100% / reference vessel area) and CT value], radiomics model (radiomics features), and multi-faceted model (all features) were constructed using support vector machine. Conventional and radiomics models showed similar predictive efficacy [AUC: 0.76, CI 0.62-0.90 vs. 0.74, CI 0.61-0.88; p > 0.05]. Adding pFAI to the conventional model showed better predictive efficacy than adding CT-FFR (AUC: 0.88, CI 0.79-0.97 vs. 0.80, CI 0.68-0.92; p < 0.05). Compared with conventional and radiomics model, the multi-faceted model showed the highest predictive efficacy (AUC: 0.92, CI 0.82-0.98, p < 0.05). CONCLUSION: pFAI is more effective for predicting MIS than CT-FFR. A multi-faceted model combining imaging features, CT-FFR, pFAI, and radiomics is a potential diagnostic tool for MIS.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Myocardial Ischemia , Humans , Computed Tomography Angiography/methods , Constriction, Pathologic , Coronary Angiography/methods , Predictive Value of Tests , Severity of Illness Index , Coronary Artery Disease/diagnostic imaging , Tomography, X-Ray Computed , Myocardial Ischemia/diagnostic imaging
19.
Acad Radiol ; 30(9): 1874-1884, 2023 09.
Article in English | MEDLINE | ID: mdl-36587998

ABSTRACT

RATIONALE AND OBJECTIVES: To build a model using white-matter radiomics features on positron-emission tomography (PET) and machine learning methods to predict progression from mild cognitive impairment (MCI) to Alzheimer disease (AD). MATERIALS AND METHODS: We analyzed the data of 341 MCI patients from the Alzheimer's Disease Neuroimaging Initiative, of whom 102 progressed to AD during an 8-year follow-up. The patients were divided into the training (238 patients) and test groups (103 patients). PET-based radiomics features were extracted from the white matter in the training group, and dimensionally reduced to construct a psychoradiomics signature (PS), which was combined with multimodal data using machine learning methods to construct an integrated model. Model performance was evaluated using receiver operating characteristic curves in the test group. RESULTS: Clinical Dementia Rating (CDR) scores, Alzheimer's Disease Assessment Scale (ADAS) scores, and PS independently predicted MCI progression to AD on multivariate logistic regression. The areas under the curve (AUCs) of the CDR, ADAS and PS in the training and test groups were 0.683, 0.755, 0.747 and 0.737, 0.743, 0.719 respectively, and were combined using a support vector machine to construct an integrated model. The AUC of the integrated model in the training and test groups was 0.868 and 0.865, respectively (sensitivity, 0.873 and 0.839, respectively; specificity, 0.784 and 0.806, respectively). The AUCs of the integrated model significantly differed from those of other predictors in both groups (p < 0.05, Delong test). CONCLUSION: Our psych radiomics signature based on white-matter PET data predicted MCI progression to AD. The integrated model built using multimodal data and machine learning identified MCI patients at a high risk of progression to AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , White Matter , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/psychology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , White Matter/diagnostic imaging , Machine Learning , Humans , Positron-Emission Tomography , Neuroimaging , Fluorodeoxyglucose F18 , Radiopharmaceuticals , Disease Progression , Male , Female , Aged , Aged, 80 and over
20.
Front Cardiovasc Med ; 10: 1282768, 2023.
Article in English | MEDLINE | ID: mdl-38179506

ABSTRACT

Objective: To develop and validate a hybrid model incorporating CT-fractional flow reserve (CT-FFR), pericoronary fat attenuation index (pFAI), and radiomics signatures for predicting progression of white matter hyperintensity (WMH). Methods: A total of 226 patients who received coronary computer tomography angiography (CCTA) and brain magnetic resonance imaging from two hospitals were divided into a training set (n = 116), an internal validation set (n = 30), and an external validation set (n = 80). Patients who experienced progression of WMH were identified from subsequent MRI results. We calculated CT-FFR and pFAI from CCTA images using semi-automated software, and segmented the pericoronary adipose tissue (PCAT) and myocardial ROI. A total of 1,073 features were extracted from each ROI, and were then refined by Elastic Net Regression. Firstly, different machine learning algorithms (Logistic Regression [LR], Support Vector Machine [SVM], Random Forest [RF], k-nearest neighbor [KNN] and eXtreme Gradient Gradient Boosting Machine [XGBoost]) were used to evaluate the effectiveness of radiomics signatures for predicting WMH progression. Then, the optimal machine learning algorithm was used to compare the predictive performance of individual and hybrid models based on independent risk factors of WMH progression. Receiver operating characteristic (ROC) curve analysis, calibration and decision curve analysis were used to evaluate predictive performance and clinical value of the different models. Results: CT-FFR, pFAI, and radiomics signatures were independent predictors of WMH progression. Based on the machine learning algorithms, the PCAT signatures led to slightly better predictions than the myocardial signatures and showed the highest AUC value in the XGBoost algorithm for predicting WMH progression (AUC: 0.731 [95% CI: 0.603-0.838] vs.0.711 [95% CI: 0.584-0.822]). In addition, pFAI provided better predictions than CT-FFR (AUC: 0.762 [95% CI: 0.651-0.863] vs. 0.682 [95% CI: 0.547-0.799]). A hybrid model that combined CT-FFR, pFAI, and two radiomics signatures provided the best predictions of WMH progression [AUC: 0.893 (95%CI: 0.815-0.956)]. Conclusion: pFAI was more effective than CT-FFR, and PCAT signatures were more effective than myocardial signatures in predicting WMH progression. A hybrid model that combines pFAI, CT-FFR, and two radiomics signatures has potential use for identifying WMH progression.

SELECTION OF CITATIONS
SEARCH DETAIL
...