Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 62(2): 342-347, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36630232

ABSTRACT

Mountain dynamic response monitoring plays important roles in geological disaster evolution monitoring and warning. A distributed mountain seismic monitoring and steady-state analysis method is demonstrated with distributed acoustic sensing (DAS) and a natural earthquake stimulus. In the field test, the seismic detection capability is first verified by comparing the recorded seismic waveforms from DAS and existing seismic stations. The vibration signal difference between steady-state and unsteady-state mountain parts is apparent; the operational modal analysis method is utilized to extract the response difference and to monitor the disaster evolution process. The proposed method has many advantages, including being easy to deploy, all-weather online monitoring, etc. It is believed that the proposed method will broaden the DAS application scope and promote the development of geological disaster early warning such as landslides and collapses.

2.
Sensors (Basel) ; 21(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34833536

ABSTRACT

Phase-sensitive optical time domain reflectometer (Φ-OTDR) has attracted attention in scientific research and industry because of its distributed dynamic linear response to external disturbances. However, the signal-to-noise ratio (SNR) of Φ-OTDR is still a limited factor by the weak Rayleigh Backscattering coefficient. Here, the multi-transverse modes heterodyne matched-filtering technology is proposed to improve the system SNR. The capture efficiency and nonlinear threshold are increased with multiple transverse modes in few-mode fibers; the incident light energy is permitted to be enlarged by a wider probe pulse by using heterodyne matched-filtering without spatial resolution being deteriorated. As far as we know, this is the first time that both multi-transverse modes integration method and digital heterodyne matched filtering method have been used to improve the SNR of Φ-OTDR simultaneously. Experimental results show that the noise floor is reduced by 11.4 dB, while the target signal is kept. We believe that this proposed method will help DAS find important applications in marine acoustic detection and seismic detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...