Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicon ; : 107845, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960288

ABSTRACT

Echis ocellatus is one of the commonest snakes responsible for envenomation in Nigeria. Antivenom is the only effective treatment, but the country suffers from a limited supply of effective antivenom. This study therefore aimed to explore the feasibility of effective, mono-specific antibodies production through immunization in rabbits using the venom of Echis ocellatus from Nigeria. The World Health Organization guide on antivenom production was employed in the immunization and the resultant antibodies were purified using protein A agarose column chromatography. Antibody titer reached a high plateau by 2-month immunization, and SDS PAGE of the sera suggests the presence of intact immunoglobulins accompanied with the heavy (50 kDa) and light (25 kDa) chains. The venom has an intravenous LD50 of 0.35 mg/kg in mice, and the venom lethality at a challenge dose of 2 LD50 was effectively neutralized by the antibodies with a potency value of 0.83 mg venom per g antibodies. The antibodies also neutralized the procoagulant activity of the venom with an effective dose (ED) of 13±0.66 ul, supporting its use for hemotoxic envenomation. The study establishes the feasibility of developing effective, mono-specific antibodies against the Nigerian Carpet viper.

2.
Front Cell Infect Microbiol ; 13: 1273982, 2023.
Article in English | MEDLINE | ID: mdl-38089816

ABSTRACT

Background: Although tremendous success has been achieved in the development and deployment of effective COVID-19 vaccines, developing effective therapeutics for the treatment of those who do come down with the disease has been with limited success. To repurpose existing drugs for COVID-19, we previously showed, qualitatively, that erythromycin, retapamulin, pyridoxine, folic acid, and ivermectin inhibit SARS-COV-2-induced cytopathic effect (CPE) in Vero cells. Aim: This study aimed to quantitatively explore the inhibition of SARS-CoV-2-induced CPE by erythromycin, retapamulin, pyridoxine, folic acid, and ivermectin and to determine the effect of these drugs on SARS-CoV-2 papain-like protease and 3CL protease (MPRO) enzymes. Methods: Neutral red (3-amino-7-dimethylamino-2-methyl-phenazine hydrochloride) cell viability assay was used to quantify CPE after infecting pre-treated Vero cells with clinical SARS-Cov-2 isolates. Furthermore, SensoLyte® 520 SARS-CoV-2 papain-like protease and SensoLyte® 520 SARS-CoV-2 MPRO activity assay kits were used to evaluate the inhibitory activity of the drugs on the respective enzymes. Results: Erythromycin, retapamulin, pyridoxine, folic acid, and ivermectin dose-dependently inhibit SARS-CoV-2-induced CPE in Vero cells, with inhibitory concentration-50 (IC50) values of 3.27 µM, 4.23 µM, 9.29 µM, 3.19 µM, and 84.31 µM, respectively. Furthermore, erythromycin, retapamulin, pyridoxine, folic acid, and ivermectin dose-dependently inhibited SARS-CoV-2 papain-like protease with IC50 values of 0.94 µM, 0.88 µM, 1.14 µM, 1.07 µM, and 1.51 µM, respectively, and inhibited the main protease (MPRO) with IC50 values of 1.35 µM, 1.25 µM, 7.36 µM, 1.15 µM, and 2.44 µM, respectively. Conclusion: The IC50 for all the drugs, except ivermectin, was at the clinically achievable plasma concentration in humans, which supports a possible role for the drugs in the management of COVID-19. The lack of inhibition of CPE by ivermectin at clinical concentrations could be part of the explanation for its lack of effectiveness in clinical trials.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Chlorocebus aethiops , Humans , Papain , Ivermectin/pharmacology , Pyridoxine , Peptide Hydrolases , Vero Cells , COVID-19 Vaccines , Erythromycin/pharmacology , Folic Acid/pharmacology , Antiviral Agents/pharmacology , Protease Inhibitors/pharmacology
3.
Front Pharmacol ; 14: 1130828, 2023.
Article in English | MEDLINE | ID: mdl-36937851

ABSTRACT

Several efforts to repurpose drugs for COVID-19 treatment have largely either failed to identify a suitable agent or agents identified did not translate to clinical use. Reasons that have been suggested to explain the failures include use of inappropriate doses, that are not clinically achievable, in the screening experiments, and the use of inappropriate pre-clinical laboratory surrogates to predict efficacy. In this study, we used an innovative algorithm, that incorporates dissemination and implementation considerations, to identify potential drugs for COVID-19 using iterative computational and wet laboratory methods. The drugs were screened at doses that are known to be achievable in humans. Furthermore, inhibition of viral induced cytopathic effect (CPE) was used as the laboratory surrogate to predict efficacy. Erythromycin, pyridoxine, folic acid and retapamulin were found to inhibit SARS-CoV-2 induced CPE in Vero cells at concentrations that are clinically achievable. Additional studies may be required to further characterize the inhibitions of CPE and the possible mechanisms.

4.
GMS Hyg Infect Control ; 15: Doc29, 2020.
Article in English | MEDLINE | ID: mdl-33299742

ABSTRACT

Aim: To assess the hypothesis that coinfection with SARS-CoV-2 and S. aureus exacerbates morbidity and mortality among patients, the study aims to report the pooled burden of S. aureus co-infections in patients hospitalized with COVID-19. Methods: We searched electronic databases and the bibliographies of pertinent papers for articles. We considered studies in which the core result was the number of patients with bacterial (S. aureus) co-infection. We performed random effects meta-analysis (REM) because the studies included were sampled from a universe of different populations and high heterogeneity was anticipated. Using the Cochran's Q statistic, the observed dispersion (heterogeneity) among effect sizes was assessed. The percentage of total variability in the estimates of the effect size was calculated with the I2 index. To check for publication bias, the Egger weighted regression, Begg rank correlation and meta-funnel plot were used. We conducted meta-regression analysis to evaluate the variability between our outcomes and the covariates using computational options such as "methods of moments" and then "maximum likelihood" ratio. Results: We included 18 studies and retrieved data for 63,370 patients hospitalized with influenza-like illness, of which about 14,369 (22.67%) tested positive for COVID-19 by rRT-PCR. Of this number, 8,249 (57.4%) patient samples were analyzed. Bacterial, fungal and viral agents were detected in 3,038 (36.8%); S. aureus in 1,192 (39.2%). Five studies reported MRSA co-infection. Study quality ranged from 6 to 9 (median 7.1) on a JBI scale. From the meta-analysis, 33.1% patients were found to be coinfected (95%, CI 18.0 to 52.6%, Q=3473: df=17, I2=99·48%, p=0.00). The rate of S. aureus /COVID-19 co-infection was 25.6% (95% CI: 15.6 to 39.0, Q=783.4, df=17, I2=97.702%, p=0.003).The proportion of COVID-19/S. aureus co-infected patients with MRSA was 53.9% (95% CI, 24.5 to 80.9, n=66, 5 studies, Q=29.32, df=4, I2=86.369%, p=0.000). With the multivariate meta-regression model, study type (p=0.029), quality (p=0.000) and country (p=0.000) were significantly associated with heterogeneity. Conclusions: The pooled rates of S. aureus among COVID-19 patients documented in this study support the concern of clinicians about the presence of S. aureus in co-infections. Improved antibiotic stewardship can be accomplished through rapid diagnosis by longitudinal sampling of patients.

5.
J Pathog ; 2018: 8938597, 2018.
Article in English | MEDLINE | ID: mdl-29862082

ABSTRACT

Escherichia coli O157:H7 is an enteric foodborne pathogen associated with life threatening disease conditions. The enterobacteria are frequently found in cattle gastrointestinal tract with high potential of contaminating animal products such as meat, milk, and cheese. A cross-sectional study was conducted to investigate the presence of Shiga toxin-producing Escherichia coli O157:H7 in milk products sold within Sokoto metropolis. Two hundred and sixty (260) samples (comprising 160 raw and 100 fermented milk samples) were collected from different sources within the study area. Bacteriological isolation and biochemical characterization yielded Escherichia coli with a detection rate of 9.23% (24/260). Molecular identification of the recovered isolates by PCR amplification of the Stx1 gene revealed Escherichia coli O157:H7 with a positive rate of 20.83% (5/24). The overall prevalence of E. coli O157:H7 was 1.92% (5/260) and the positive proportions for raw and fermented milk samples were 1.86% (3/160) and 2.0% (2/100), respectively. Fisher's Exact test showed a nonsignificant association between the isolates and the different milk types (p = 0.943; OR = 0.94; [95% CI: 0.154-5.704]). The results revealed presence of Escherichia coli O157:H7 in raw and fermented milk sold within Sokoto metropolis, Nigeria. The findings indicate possible feacal contamination of the milk products, with serious public health consequences. This necessitates the need to screen other milk products produced in the area such as butter and cheese. Health authorities in the State need to enlighten dairy farmers on the zoonotic potential of Escherichia coli O157:H7 and the role of cattle in the spread of the pathogen.

SELECTION OF CITATIONS
SEARCH DETAIL
...