Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-512957

ABSTRACT

Emerging COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a great threat to human health and economics. Although SARS-CoV-2 entry mechanism has been explored, little is known about how SARS-CoV-2 regulates the host cell remodeling to facilitate virus invasion process. Here we unveil that SARS-CoV-2 boosts and repurposes filopodia for entry to the target cells. Using SARS-CoV-2 virus-like particle (VLP), real-time live-cell imaging and simulation of active gel model, we reveal that VLP-induced Cdc42 activation leads to the formation of filopodia, which reinforce the viral entry to host cells. By single-particle tracking and sparse deconvolution algorithm, we uncover that VLP particles utilize filopodia to reach the entry site in two patterns, surfing and grabbing, which are more efficient and faster than entry via flat plasma membrane regions. Furthermore, the entry process via filopodia is dependent on the actin cytoskeleton and actin-associated proteins fascin, formin, and Arp2/3. Importantly, either inhibition the actin cross-linking protein fascin or the active level of Cdc42 could significantly hinders both the VLP and the authentic SARS-CoV-2 entry. Together, our results highlight that the spatial-temporal regulation of the actin cytoskeleton by SARS-CoV-2 infection makes filopodia as a highway for virus entry, which emerges as an antiviral target. Significance StatementRevealing the mechanism of SARS-CoV-2 invasion is of great significance to explain its high pathogenic and rapid transmission in the world. We discovered a previously unknown route of SARS-CoV-2 entry. SARS-CoV-2 virus-like particles boost cellular filopodia formation by activating Cdc42. Using state-of-art-technology, we spatial-temporally described how virus utilize filopodia to enter the target cell in two modes: surfing and grabbing. Filopodia can directly transport the virus to endocytic hot spots to avoid the virus from disorderly searching on the plasma membrane. Our study complements current knowledge of SARS-CoV-2 that filopodia and its components not only play an important role in virus release and cell-cell transmission, but also in the entry process, and provides several potential therapeutic targets for SARS-CoV-2. HighlightsO_LISARS-CoV-2 VLP infection promotes filopodia formation by activating Cdc42 C_LIO_LISARS-CoV-2 VLP utilizes filopodia to enter target cell via two modes, surfing and grabbing C_LIO_LIFilopodia disruption compromises the invasion of both VLP and authentic SARS-CoV-2 C_LI

2.
Chinese Journal of Biotechnology ; (12): 1101-1108, 2017.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-242246

ABSTRACT

With basal medium, we studied the growth status, lipid droplet distribution, total lipid content of Chlorella protothecoides CS-41 treated with different concentrations of sodium chloride (0, 150, 300 and 600 mmol/L) by optical microscopy, electron microscopy, confocal laser focusing and Nile red staining. Results show that the addition of NaCl affected the growth of Chlorella protothecoides CS-41. With the increase of NaCl concentration, the growth rate of Chlorella was inhibited. Chlorella cell wall became thicker, and lipid droplets increased. At the early stage, the amount of lipid droplets in the 600 mmol/L NaCl culture was the highest, but at the late-log stage, the amount of lipid droplets increased with the increase of the biomass of culture in 150 and 300 mmol/L NaCl culture. At the stable stage, biomass (dry weight) in 300 mmol/L NaCl culture was 73.55% of that in the control, but the total lipid content was 2.22 times higher than that in the control. A certain concentration of sodium chloride treatment can significantly increase the lipid content of Chlorella protothecoides CS-41.

3.
Acta Pharmaceutica Sinica ; (12): 169-73, 2015.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-457285

ABSTRACT

For screening the potential drugs as anti-liver fibrosis candidates, we established a high- throughput drug screening cell model based on COL1A1 promoter. The activity of COL1A1 promoter and luciferase reporter gene can be elevated by TGF-β1, and inhibited by candidate drugs. We constructed a recombined plasmid with COL1A1 promoter and luciferase reporter gene pGL4.17, the activity of COL1A1 promoter was reflected by fluorescence intensity. COL1A1 promoter activity was detected by Dual-Luciferase Reporter Assay System, it came that the relative luciferase activity of COL1A1 promoter was 15.98 times higher than that of control group induced by TGF-β1, showing the recombined plasmid could be used in cell model. The recombined plasmid was transfected into human hepatic stellate cells LX2, detected the effect of potential drugs, and obtained a stable expression system through stable transfection and monoclonal cell culture. A sample which could reduce COL1A1 promoter activity signally by our cell model, decreased collagen I mRNA and protein expression detected by real-time RT-PCR and Western blotting. It indicates this novel cell model can be used in high-throughput drug screening of potential anti-liver fibrosis drugs.

4.
Acta Pharmaceutica Sinica ; (12): 1365-71, 2014.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-457224

ABSTRACT

Liver fibrosis is a pathological process of the excessive accumulation of extracellular matrix, especially collagen al (I) in liver. Ultimately, hepatic fibrosis leads to cirrhosis or hepatic failure. Liver fibrosis and early cirrhosis can be reversed, thus control of the development of liver fibrosis is very important for preventive treatment of cirrhosis and hepatic failure. This is a review of potential targets for anti-hepatic fibrosis based on plenty of publications, including TGF-β1 and integrin α(v) and so on, aimed at providing novel therapeutic targets in liver fibrosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...