Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Nanotechnology ; 29(37): 375202, 2018 Sep 14.
Article in English | MEDLINE | ID: mdl-29944469

ABSTRACT

The microwave conductivity and permittivity of both single-walled and multi-walled carbon nanotube (SWCNT and MWCNT) sponges were measured while compressing the samples. Compression leads to a huge variation of the absorptance, reflectance, and transmittance of the samples. The dependence of the microwave conductivity on the sponge density follows a power-law relation with exponents 1.7 ± 0.1 and 2.0 ± 0.2 for MWCNT and SWCNT sponges, respectively. These exponents can be decreased slightly by the addition of a non-conducting component which partly electrically separates adjacent tubes within the samples. The conductivity of MWCNT sponge was measured in the terahertz range while heating in air from 300 to 513 K and it increased due to an increase of a number of conducting channels in MWCNTs.

2.
Nanotechnology ; 23(49): 495714, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23154484

ABSTRACT

To decrease single-wall carbon nanotube (SWCNT) lengths to a value of 100-200 nm, aggressive cutting methods, accompanied by a high loss of starting material, are frequently used. We propose a cutting approach based on low temperature intensive ultrasonication in a mixture of sulfuric and nitric acids. The method is nondestructive with a yield close to 100%. It was applied to cut nanotubes produced in three different ways: gas-phase catalysis, chemical vapor deposition, and electric-arc-discharge methods. Raman and Fourier transform infrared spectroscopy were used to demonstrate that the cut carbon nanotubes have a low extent of sidewall degradation and their electronic properties are close to those of the untreated tubes. It was proposed to use the spectral position of the far-infrared absorption peak as a simple criterion for the estimation of SWCNT length distribution in the samples.


Subject(s)
Crystallization/methods , Nanotubes, Carbon/chemistry , Nitric Acid/chemistry , Sonication/methods , Sulfuric Acids/chemistry , Cold Temperature , Complex Mixtures/chemistry , Complex Mixtures/radiation effects , Materials Testing , Nanotubes, Carbon/radiation effects , Nitric Acid/radiation effects , Particle Size , Sulfuric Acids/radiation effects
3.
Biull Eksp Biol Med ; 101(3): 270-3, 1986 Mar.
Article in Russian | MEDLINE | ID: mdl-2420391

ABSTRACT

Current and voltage clamp investigations of freshly isolated smooth muscle cells from guinea-pig ileum and taenia coli were performed using single suction micropipette technique. Specific membrane capacity of smooth muscle cells was calculated and accounted for 1.6 microF/cm2, with specific resistance varying from 50 to 150 k omega X cm2. Transmembrane currents consisted of two inward components, inactivating and noninactivating ones, carried by Ca2+ ions, overlapping with early activated potassium outward current. Time constant of inward current activation was not only voltage-sensitive but also ion-dependent. When Ca2+ ions in Krebs solution were replaced by Ba2+, both the rate of activation and inactivation of inward current were significantly reduced. Estimation of intracellular Ca2+ concentration increase has indicated that inward calcium current transports enough Ca2+ for direct contraction activation.


Subject(s)
Ion Channels/physiology , Muscle, Smooth/physiology , Animals , Barium/metabolism , Calcium/metabolism , Cell Separation , Electric Stimulation/instrumentation , Electric Stimulation/methods , Guinea Pigs , Membrane Potentials , Potassium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...