Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Brain Behav Immun Health ; 38: 100757, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38590761

ABSTRACT

Background: A bioactive myelin basic protein (MBP) fragment, comprising MBP84-104, is released in sciatic nerve after chronic constriction injury (CCI). Intraneural injection (IN) of MBP84-104 in an intact sciatic nerve is sufficient to induce persistent neuropathic pain-like behavior via robust transcriptional remodeling at the injection site and ipsilateral dorsal root ganglia (DRG) and spinal cord. The sex (female)-specific pronociceptive activity of MBP84-104 associates with sex-specific changes in cholesterol metabolism and activation of estrogen receptor (ESR)1 signaling. Methods: In male and female normal and post-CCI rat sciatic nerves, we assessed: (i) cholesterol precursor and metabolite levels by lipidomics; (ii) MBP84-104 interactors by mass spectrometry of MBP84-104 pull-down; and (iii) liver X receptor (LXR)α protein expression by immunoblotting. To test the effect of LXRα stimulation on IN MBP84-104-induced mechanical hypersensitivity, the LXRα expression was confirmed along the segmental neuraxis, in DRG and spinal cord, followed by von Frey testing of the effect of intrathecally administered synthetic LXR agonist, GW3965. In cultured male and female rat DRGs exposed to MBP84-104 and/or estrogen treatments, transcriptional effect of LXR stimulation by GW3965 was assessed on downstream cholesterol transporter Abc, interleukin (IL)-6, and pronociceptive Cacna2d1 gene expression. Results: CCI regulated LXRα ligand and receptor levels in nerves of both sexes, with cholesterol precursors, desmosterol and 7-DHC, and oxysterol elevated in females relative to males. MBP84-104 interacted with nuclear receptor coactivator (Ncoa)1, known to activate LXRα, injury-specific in nerves of both sexes. LXR stimulation suppressed ESR1-induced IL-6 and Cacna2d1 expression in cultured DRGs of both sexes and attenuated MBP84-104-induced pain in females. Conclusion: The injury-released bioactive MBP fragments induce pronociceptive changes by selective inactivation of nuclear transcription factors, including LXRα. By Ncoa1 sequestration, bioactive MBP fragments render LXRα function to counteract pronociceptive activity of estrogen/ESR1 in sensory neurons. This effect of MBP fragments is prevalent in females due to high circulating estrogen levels in females relative to males. Restoring LXR activity presents a promising therapeutic strategy in management of neuropathic pain induced by bioactive MBP.

2.
Front Mol Neurosci ; 15: 1029278, 2022.
Article in English | MEDLINE | ID: mdl-36385770

ABSTRACT

Sexual dimorphism is a powerful yet understudied factor that influences the timing and efficiency of gene regulation in axonal injury and repair processes in the peripheral nervous system. Here, we identified common and distinct biological processes in female and male degenerating (distal) nerve stumps based on a snapshot of transcriptional reprogramming 24 h after axotomy reflecting the onset of early phase Wallerian degeneration (WD). Females exhibited transcriptional downregulation of a larger number of genes than males. RhoGDI, ERBB, and ERK5 signaling pathways increased activity in both sexes. Males upregulated genes and canonical pathways that exhibited robust baseline expression in females in both axotomized and sham nerves, including signaling pathways controlled by neuregulin and nerve growth factors. Cholesterol biosynthesis, reelin signaling, and synaptogenesis signaling pathways were downregulated in females. Signaling by Rho Family GTPases, cAMP-mediated signaling, and sulfated glycosaminoglycan biosynthesis were downregulated in both sexes. Estrogens potentially influenced sex-dependent injury response due to distinct regulation of estrogen receptor expression. A crosstalk of cytokines and growth hormones could promote sexually dimorphic transcriptional responses. We highlighted prospective regulatory activities due to protein phosphorylation, extracellular proteolysis, sex chromosome-specific expression, major urinary proteins (MUPs), and genes involved in thyroid hormone metabolism. Combined with our earlier findings in the corresponding dorsal root ganglia (DRG) and regenerating (proximal) nerve stumps, sex-specific and universal early phase molecular triggers of WD enrich our knowledge of transcriptional regulation in peripheral nerve injury and repair.

3.
Front Mol Neurosci ; 15: 958568, 2022.
Article in English | MEDLINE | ID: mdl-35983069

ABSTRACT

The convergence of transcriptional and epigenetic changes in the peripheral nervous system (PNS) reshapes the spatiotemporal gene expression landscape in response to nerve transection. The control of these molecular programs exhibits sexually dimorphic characteristics that remain not sufficiently characterized. In the present study, we recorded genome-wide and sex-dependent early-phase transcriptional changes in regenerating (proximal) sciatic nerve 24 h after axotomy. Male nerves exhibited more extensive transcriptional changes with male-dominant upregulation of cytoskeletal binding and structural protein genes. Regulation of mRNAs encoding ion and ionotropic neurotransmitter channels displayed prominent sexual dimorphism consistent with sex-specific mRNA axonal transport in an early-phase regenerative response. Protein kinases and axonal transport genes showed sexually dimorphic regulation. Genes encoding components of synaptic vesicles were at high baseline expression in females and showed post-injury induction selectively in males. Predictive bioinformatic analyses established patterns of sexually dimorphic regulation of neurotrophic and immune genes, including activation of glial cell line-derived neurotrophic factor Gfra1 receptor and immune checkpoint cyclin D1 (Ccnd1) potentially linked to X-chromosome encoded tissue inhibitor of matrix metallo proteinases 1 (Timp1). Regulatory networks involving Olig1, Pou3f3/Oct6, Myrf, and Myt1l transcription factors were linked to sex-dependent reprogramming in regenerating nerves. Differential expression patterns of non-coding RNAs motivate a model of sexually dimorphic nerve regenerative responses to injury determined by epigenetic factors. Combined with our findings in the corresponding dorsal root ganglia (DRG), unique early-phase sex-specific molecular triggers could enrich the mechanistic understanding of peripheral neuropathies.

4.
Front Cell Neurosci ; 16: 835800, 2022.
Article in English | MEDLINE | ID: mdl-35496906

ABSTRACT

Immunotherapy holds promise as a non-addictive treatment of refractory chronic pain states. Increasingly, sex is recognized to impact immune regulation of pain states, including mechanical allodynia (pain from non-painful stimulation) that follows peripheral nerve trauma. This study aims to assess the role of B cells in sex-specific responses to peripheral nerve trauma. Using a rat model of sciatic nerve chronic constriction injury (CCI), we analyzed sex differences in (i) the release of the immunodominant neural epitopes of myelin basic protein (MBP); (ii) the levels of serum immunoglobulin M (IgM)/immunoglobulin G (IgG) autoantibodies against the MBP epitopes; (iii) endoneurial B cell/CD20 levels; and (iv) mechanical sensitivity behavior after B cell/CD20 targeting with intravenous (IV) Rituximab (RTX) and control, IV immunoglobulin (IVIG), therapy. The persistent MBP epitope release in CCI nerves of both sexes was accompanied by the serum anti-MBP IgM autoantibody in female CCI rats alone. IV RTX therapy during CD20-reactive cell infiltration of nerves of both sexes reduced mechanical allodynia in females but not in males. IVIG and vehicle treatments had no effect in either sex. These findings provide strong evidence for sexual dimorphism in B-cell function after peripheral nervous system (PNS) trauma and autoimmune pathogenesis of neuropathic pain, potentially amenable to immunotherapeutic intervention, particularly in females. A myelin-targeted serum autoantibody may serve as a biomarker of such painful states. This insight into the biological basis of sex-specific response to neuraxial injury will help personalize regenerative and analgesic therapies.

5.
EMBO Rep ; 23(6): e54069, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35466531

ABSTRACT

Human coronaviruses have been recently implicated in neurological sequelae by insufficiently understood mechanisms. We here identify an amino acid sequence within the HCoV-OC43 p65-like protein homologous to the evolutionarily conserved motif of myelin basic protein (MBP). Because MBP-derived peptide exposure in the sciatic nerve produces pronociceptive activity in female rodents, we examined whether a synthetic peptide derived from the homologous region of HCoV-OC43 (OC43p) acts by molecular mimicry to promote neuropathic pain. OC43p, but not scrambled peptides, induces mechanical hypersensitivity in rats following intrasciatic injections. Transcriptome analyses of the corresponding spinal cords reveal upregulation of genes and signaling pathways with known nociception-, immune-, and cellular energy-related activities. Affinity capture shows the association of OC43p with an Na+ /K+ -transporting ATPase, providing a potential direct target and mechanistic insight into virus-induced effects on energy homeostasis and the sensory neuraxis. We propose that HCoV-OC43 polypeptides released during infection dysregulate normal nervous system functions through molecular mimicry of MBP, leading to mechanical hypersensitivity. Our findings might provide a new paradigm for virus-induced neuropathic pain.


Subject(s)
Coronavirus OC43, Human , Neuralgia , Amino Acid Sequence , Animals , Coronavirus OC43, Human/physiology , Female , Humans , Peptides , Rats , Spinal Cord
6.
Neurotoxicology ; 88: 155-167, 2022 01.
Article in English | MEDLINE | ID: mdl-34801587

ABSTRACT

Spinally-administered local anesthetics provide effective perioperative anesthesia and/or analgesia for children of all ages. New preparations and drugs require preclinical safety testing in developmental models. We evaluated age-dependent efficacy and safety following 1 % preservative-free 2-chloroprocaine (2-CP) in juvenile Sprague-Dawley rats. Percutaneous lumbar intrathecal 2-CP was administered at postnatal day (P)7, 14 or 21. Mechanical withdrawal threshold pre- and post-injection evaluated the degree and duration of sensory block, compared to intrathecal saline and naive controls. Tissue analyses one- or seven-days following injection included histopathology of spinal cord, cauda equina and brain sections, and quantification of neuronal apoptosis and glial reactivity in lumbar spinal cord. Following intrathecal 2-CP or saline at P7, outcomes assessed between P30 and P72 included: spinal reflex sensitivity (hindlimb thermal latency, mechanical threshold); social approach (novel rat versus object); locomotor activity and anxiety (open field with brightly-lit center); exploratory behavior (rearings, holepoking); sensorimotor gating (acoustic startle, prepulse inhibition); and learning (Morris Water Maze). Maximum tolerated doses of intrathecal 2-CP varied with age (1.0 µL/g at P7, 0.75 µL/g at P14, 0.5 µL/g at P21) and produced motor and sensory block for 10-15 min. Tissue analyses found no significant differences across intrathecal 2-CP, saline or naïve groups. Adult behavioral measures showed expected sex-dependent differences, that did not differ between 2-CP and saline groups. Single maximum tolerated in vivo doses of intrathecal 2-CP produced reversible spinal anesthesia in juvenile rodents without detectable evidence of developmental neurotoxicity. Current results cannot be extrapolated to repeated dosing or prolonged infusion.


Subject(s)
Neurotoxicity Syndromes/etiology , Procaine/analogs & derivatives , Animals , Caspase 3/metabolism , Cauda Equina/anatomy & histology , Cauda Equina/drug effects , Female , Injections, Spinal , Male , Morris Water Maze Test/drug effects , Motor Activity/drug effects , Procaine/administration & dosage , Procaine/toxicity , Rats , Rats, Sprague-Dawley , Sensory Gating/drug effects
7.
Front Mol Neurosci ; 14: 779024, 2021.
Article in English | MEDLINE | ID: mdl-34966260

ABSTRACT

Peripheral nerve injury induces genome-wide transcriptional reprogramming of first-order neurons and auxiliary cells of dorsal root ganglia (DRG). Accumulating experimental evidence suggests that onset and mechanistic principles of post-nerve injury processes are sexually dimorphic. We examined largely understudied aspects of early transcriptional events in DRG within 24 h after sciatic nerve axotomy in mice of both sexes. Using high-depth RNA sequencing (>50 million reads/sample) to pinpoint sexually dimorphic changes related to regeneration, immune response, bioenergy, and sensory functions, we identified a higher number of transcriptional changes in male relative to female DRG. In males, the decline in ion channel transcripts was accompanied by the induction of innate immune cascades via TLR, chemokine, and Csf1-receptor axis and robust regenerative programs driven by Sox, Twist1/2, and Pax5/9 transcription factors. Females demonstrated nerve injury-specific transcriptional co-activation of the actinin 2 network. The predicted upstream regulators and interactive networks highlighted the role of novel epigenetic factors and genetic linkage to sex chromosomes as hallmarks of gene regulation post-axotomy. We implicated epigenetic X chromosome inactivation in the regulation of immune response activity uniquely in females. Sexually dimorphic regulation of MMP/ADAMTS metalloproteinases and their intrinsic X-linked regulator Timp1 contributes to extracellular matrix remodeling integrated with pro-regenerative and immune functions. Lexis1 non-coding RNA involved in LXR-mediated lipid metabolism was identified as a novel nerve injury marker. Together, our data identified unique early response triggers of sex-specific peripheral nerve injury regulation to gain mechanistic insights into the origin of female- and male-prevalent sensory neuropathies.

8.
J Biol Chem ; 295(31): 10807-10821, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32532796

ABSTRACT

In the peripheral nerve, mechanosensitive axons are insulated by myelin, a multilamellar membrane formed by Schwann cells. Here, we offer first evidence that a myelin degradation product induces mechanical hypersensitivity and global transcriptomics changes in a sex-specific manner. Focusing on downstream signaling events of the functionally active 84-104 myelin basic protein (MBP(84-104)) fragment released after nerve injury, we demonstrate that exposing the sciatic nerve to MBP(84-104) via endoneurial injection produces robust mechanical hypersensitivity in female, but not in male, mice. RNA-seq and systems biology analysis revealed a striking sexual dimorphism in molecular signatures of the dorsal root ganglia (DRG) and spinal cord response, not observed at the nerve injection site. Mechanistically, intra-sciatic MBP(84-104) induced phospholipase C (PLC)-driven (females) and phosphoinositide 3-kinase-driven (males) phospholipid metabolism (tier 1). PLC/inositol trisphosphate receptor (IP3R) and estrogen receptor co-regulation in spinal cord yielded Ca2+-dependent nociceptive signaling induction in females that was suppressed in males (tier 2). IP3R inactivation by intrathecal xestospongin C attenuated the female-specific hypersensitivity induced by MBP(84-104). According to sustained sensitization in tiers 1 and 2, T cell-related signaling spreads to the DRG and spinal cord in females, but remains localized to the sciatic nerve in males (tier 3). These results are consistent with our previous finding that MBP(84-104)-induced pain is T cell-dependent. In summary, an autoantigenic peptide endogenously released in nerve injury triggers multisite, sex-specific transcriptome changes, leading to neuropathic pain only in female mice. MBP(84-104) acts through sustained co-activation of metabolic, estrogen receptor-mediated nociceptive, and autoimmune signaling programs.


Subject(s)
Calcium Signaling , Ganglia, Spinal/metabolism , Neuralgia/metabolism , RNA-Seq , Sciatic Nerve/metabolism , Sex Characteristics , Transcriptome , Animals , Female , Ganglia, Spinal/pathology , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Male , Mice , Myelin Basic Protein/toxicity , Neuralgia/chemically induced , Neuralgia/pathology , Peptide Fragments/toxicity , Sciatic Nerve/pathology , Type C Phospholipases/metabolism
9.
Mol Pain ; 14: 1744806918815005, 2018.
Article in English | MEDLINE | ID: mdl-30392459

ABSTRACT

Complex regional pain syndrome is an extremely painful condition that develops after trauma to a limb. Complex regional pain syndrome exhibits autoimmune features in part mediated by autoantibodies against muscarinic-2 acetylcholine (M2) receptor. The mechanisms underlying the M2 receptor involvement in complex regional pain syndrome remain obscure. Based on our recent work demonstrating that limb nerve trauma releases a potent proalgesic, immunodominant myelin basic protein fragment, our present sequence database analyses reveal an unexpected and previously undescribed structural homology of the proalgesic myelin basic protein fragment with the M2 receptor. As both complex regional pain syndrome and the proalgesic myelin basic protein activity are prevalent in females, this myelin basic protein/M2 homology presents an inviting hypothesis explaining the mechanisms of autoimmune pathogenesis and sexual dimorphism that underlies vulnerability toward developing complex regional pain syndrome and other pain states with neuropathic features. This hypothesis may aid in the development of novel diagnostic and therapeutic strategies to chronic pain.


Subject(s)
Complex Regional Pain Syndromes/etiology , Myelin Basic Protein/chemistry , Receptors, Muscarinic/chemistry , Structural Homology, Protein , Amino Acid Sequence , Autoantibodies/metabolism , Female , Humans , Male , Myelin Basic Protein/metabolism , Receptors, Muscarinic/metabolism , Sex Characteristics
10.
Neural Regen Res ; 13(11): 1890-1892, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30233060
11.
FEBS J ; 285(18): 3485-3502, 2018 09.
Article in English | MEDLINE | ID: mdl-30079618

ABSTRACT

Neurotrauma frequently results in neuropathic pain. Our earlier studies revealed that peripheral neurotrauma-induced fragmentation of the myelin basic protein (MBP), a major component of the myelin sheath formed by Schwann cells, initiates a pain response from light touch stimuli (mechanical allodynia) in rodents. Here, we identified the cyclin-dependent kinase 5 (CDK5), as an intracellular interactor of MBP in Schwann cells. The algesic peptide fragment of MBP directly associated with CDK5. When complexed with its p25 coactivator, CDK5 phosphorylated the conserved MBP sequence. The expressed MBP fragment colocalized with CDK5 in Schwann cell protrusions. Roscovitine, an ATP-competitive CDK5 inhibitor, disrupted localization of the expressed MBP peptide. Mutations in the evolutionary conserved MBP algesic sequence resulted in the interference with intracellular trafficking of the MBP fragment and kinase activity of CDK5 and diminished pain-like behavior in rodents. Our findings show that MBP fragment amino acid sequence conservation determines its interactions, trafficking, and pronociceptive activity. Because CDK5 activity controls both neurogenesis and nociception, the algesic MBP fragment may be involved in the regulation of the CDK5 functionality in pain signaling and postinjury neurogenesis in vertebrates. DATABASE: The novel RNA-seq datasets were deposited in the GEO database under the accession number GSE107020.


Subject(s)
Cyclin-Dependent Kinase 5/metabolism , Myelin Basic Protein/metabolism , Pain/physiopathology , Peptide Fragments/metabolism , Schwann Cells/metabolism , Amino Acid Sequence , Animals , Cells, Cultured , Conserved Sequence , Female , Hyperalgesia , Pain/metabolism , Phosphorylation , Rats , Rats, Sprague-Dawley , Sequence Homology , Signal Transduction
12.
Biochem J ; 475(14): 2355-2376, 2018 07 31.
Article in English | MEDLINE | ID: mdl-29954845

ABSTRACT

In demyelinating nervous system disorders, myelin basic protein (MBP), a major component of the myelin sheath, is proteolyzed and its fragments are released in the neural environment. Here, we demonstrated that, in contrast with MBP, the cellular uptake of the cryptic 84-104 epitope (MBP84-104) did not involve the low-density lipoprotein receptor-related protein-1, a scavenger receptor. Our pull-down assay, mass spectrometry and molecular modeling studies suggested that, similar with many other unfolded and aberrant proteins and peptides, the internalized MBP84-104 was capable of binding to the voltage-dependent anion-selective channel-1 (VDAC-1), a mitochondrial porin. Molecular modeling suggested that MBP84-104 directly binds to the N-terminal α-helix located midway inside the 19 ß-blade barrel of VDAC-1. These interactions may have affected the mitochondrial functions and energy metabolism in multiple cell types. Notably, MBP84-104 caused neither cell apoptosis nor affected the total cellular ATP levels, but repressed the aerobic glycolysis (lactic acid fermentation) and decreased the l-lactate/d-glucose ratio (also termed as the Warburg effect) in normal and cancer cells. Overall, our findings implied that because of its interactions with VDAC-1, the cryptic MBP84-104 peptide invoked reprogramming of the cellular energy metabolism that favored enhanced cellular activity, rather than apoptotic cell death. We concluded that the released MBP84-104 peptide, internalized by the cells, contributes to the reprogramming of the energy-generating pathways in multiple cell types.


Subject(s)
Adenosine Triphosphate/metabolism , Energy Metabolism/drug effects , Mitochondria/metabolism , Myelin Basic Protein/pharmacology , Peptide Fragments/pharmacology , Voltage-Dependent Anion Channel 1/metabolism , Adenosine Triphosphate/chemistry , Animals , Cell Line, Tumor , Glycolysis/drug effects , Humans , Mice , Mitochondria/chemistry , Myelin Basic Protein/chemistry , Peptide Fragments/chemistry , Protein Domains , Protein Structure, Secondary , Rats , Voltage-Dependent Anion Channel 1/chemistry
14.
J Neuroinflammation ; 15(1): 89, 2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29558999

ABSTRACT

BACKGROUND: In the peripheral nerve, pro-inflammatory matrix metalloproteinase (MMP)-9 performs essential functions in the acute response to injury. Whether MMP-9 activity contributes to late-phase injury or whether MMP-9 expression or activity after nerve injury is sexually dimorphic remains unknown. METHODS: Patterns of MMP-9 expression, activity and excretion were assessed in a model of painful peripheral neuropathy, sciatic nerve chronic constriction injury (CCI), in female and male rats. Real-time Taqman RT-PCR for MMP-9 and its endogenous inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1) of nerve samples over a 2-month time course of CCI was followed by gelatin zymography of crude nerve extracts and purified MMP-9 from the extracts using gelatin Sepharose-beads. MMP excretion was determined using protease activity assay of urine in female and male rats with CCI. RESULTS: The initial upsurge in nerve MMP-9 expression at day 1 post-CCI was superseded more than 100-fold at day 28 post-CCI. The high level of MMP-9 expression in late-phase nerve injury was accompanied by the reduction in TIMP-1 level. The absence of MMP-9 in the normal nerve and the presence of multiple MMP-9 species (the proenzyme, mature enzyme, homodimers, and heterodimers) was observed at day 1 and day 28 post-CCI. The MMP-9 proenzyme and mature enzyme species dominated in the early- and late-phase nerve injury, consistent with the high and low level of TIMP-1 expression, respectively. The elevated nerve MMP-9 levels corresponded to the elevated urinary MMP excretion post-CCI. All of these findings were comparable in female and male rodents. CONCLUSION: The present study offers the first evidence for the excessive, uninhibited proteolytic MMP-9 activity during late-phase painful peripheral neuropathy and suggests that the pattern of MMP-9 expression, activity, and excretion after peripheral nerve injury is universal in both sexes.


Subject(s)
Matrix Metalloproteinase 9/metabolism , Sciatic Neuropathy/enzymology , Sex Characteristics , Animals , Disease Models, Animal , Female , Male , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/urine , RNA, Messenger/metabolism , Rats , S100 Proteins/metabolism , Time Factors , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/urine
15.
J Immunol Methods ; 455: 80-87, 2018 04.
Article in English | MEDLINE | ID: mdl-29428829

ABSTRACT

Sciatic nerve chronic constriction injury (CCI) in rodents produces nerve demyelination via proteolysis of myelin basic protein (MBP), the major component of myelin sheath. Proteolysis releases the cryptic MBP epitope, a demyelination marker, which is hidden in the native MBP fold. It has never been established if the proteolytic release of this cryptic MBP autoantigen stimulates the post-injury increase in the respective circulating autoantibodies. To measure these autoantibodies, we developed the ELISA that employed the cryptic 84-104 MBP sequence (MBP84-104) as bait. This allowed us, for the first time, to quantify the circulating anti-MBP84-104 autoantibodies in rat serum post-CCI. The circulating IgM (but not IgG) autoantibodies were detectable as soon as day 7 post-CCI. The IgM autoantibody level continually increased between days 7 and 28 post-injury. Using the rat serum samples, we established that the ELISA intra-assay (precision) and inter-assay (repeatability) variability parameters were 2.87% and 4.58%, respectively. We also demonstrated the ELISA specificity by recording the autoantibodies to the liberated MBP84-104 epitope alone, but not to intact MBP in which the 84-104 region is hidden. Because the 84-104 sequence is conserved among mammals, we tested if the ELISA was applicable to detect demyelination and quantify the respective autoantibodies in humans. Our limited pilot study that involved 16 female multiple sclerosis and fibromyalgia syndrome patients demonstrated that the ELISA was efficient in measuring both the circulating IgG- and IgM-type autoantibodies in patients exhibiting demyelination. We believe that the ELISA measurements of the circulating autoantibodies against the pathogenic MBP84-104 peptide may facilitate the identification of demyelination in both experimental and clinical settings. In clinic, these measurements may assist neurologists to recognize patients with painful neuropathy and demyelinating diseases, and as a result, to personalize their treatment regimens.


Subject(s)
Autoantigens/immunology , Enzyme-Linked Immunosorbent Assay/methods , Multiple Sclerosis/diagnosis , Myelin Basic Protein/immunology , Peptide Fragments/immunology , Polyradiculoneuropathy/diagnosis , Sciatic Nerve/pathology , Animals , Autoantibodies/metabolism , Biomarkers/metabolism , Demyelinating Diseases , Disease Models, Animal , Epitopes/metabolism , Female , Humans , Rats , Rats, Sprague-Dawley , Sciatic Nerve/surgery , Sensitivity and Specificity
16.
Brain Behav Immun ; 60: 282-292, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27833045

ABSTRACT

Myelin basic protein (MBP) is an auto-antigen able to induce intractable pain from innocuous mechanical stimulation (mechanical allodynia). The mechanisms provoking this algesic MBP activity remain obscure. Our present study demonstrates that membrane type 1 matrix metalloproteinase (MT1-MMP/MMP-14) releases the algesic MBP peptides from the damaged myelin, which then reciprocally enhance the expression of MT1-MMP in nerve to sustain a state of allodynia. Specifically, MT1-MMP expression and activity in rat sciatic nerve gradually increased starting at day 3 after chronic constriction injury (CCI). Inhibition of the MT1-MMP activity by intraneural injection of the function-blocking human DX2400 monoclonal antibody at day 3 post-CCI reduced mechanical allodynia and neuropathological signs of Wallerian degeneration, including axon demyelination, degeneration, edema and formation of myelin ovoids. Consistent with its role in allodynia, the MT1-MMP proteolysis of MBP generated the MBP69-86-containing epitope sequences in vitro. In agreement, the DX2400 therapy reduced the release of the MBP69-86 epitope in CCI nerve. Finally, intraneural injection of the algesic MBP69-86 and control MBP2-18 peptides differentially induced MT1-MMP and MMP-2 expression in the nerve. With these data we offer a novel, self-sustaining mechanism of persistent allodynia via the positive feedback loop between MT1-MMP and the algesic MBP peptides. Accordingly, short-term inhibition of MT1-MMP activity presents a feasible pharmacological approach to intervene in this molecular circuit and the development of neuropathic pain.


Subject(s)
Matrix Metalloproteinase 1/metabolism , Myelin Basic Protein/metabolism , Myelin Sheath/metabolism , Neuralgia/metabolism , Animals , Female , Hyperalgesia/metabolism , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 2/metabolism , Peptides , Rats, Sprague-Dawley , Sciatic Nerve/injuries
18.
Anesthesiology ; 125(2): 378-94, 2016 08.
Article in English | MEDLINE | ID: mdl-27272672

ABSTRACT

BACKGROUND: Intrathecal infusion of opioids in dogs, sheep, and humans produces local space-occupying masses. To develop a small-animal model, the authors examined effects of intrathecal catheterization and morphine infusion in guinea pigs. METHODS: Under isoflurane, polyethylene or polyurethane catheters were advanced from the cisterna magna to the lumbar enlargement. Drugs were delivered as a bolus through the externalized catheter or continuously by subcutaneous minipumps. Hind paw withdrawal to a thermal stimulus was assessed. Spinal histopathology was systematically assessed in a blinded fashion. To assist in determining catheter placement, ex vivo images were obtained using magnetic resonance imaging in several animals. Canine spinal tissue from previous intrathecal morphine studies was analyzed in parallel. RESULTS: (1) Polyethylene (n = 30) and polyurethane (n = 25) catheters were implanted in the lumbar intrathecal space. (2) Bolus intrathecal morphine produced a dose-dependent (20 to 40 µg/10 µl) increase in thermal escape latencies. (3) Absent infusion, a catheter-associated distortion of the spinal cord and a fibrotic investment were noted along the catheter tract (polyethylene > polyurethane). (4) Intrathecal morphine infusion (25 mg/ml/0.5 µl/h for 14 days) resulted in intrathecal masses (fibroblasts, interspersed collagen, lymphocytes, and macrophages) arising from meninges proximal to the catheter tip in both polyethylene- and polyurethane-catheterized animals. This closely resembles mass histopathology from intrathecal morphine canine studies. CONCLUSIONS: Continuous intrathecal infusion of morphine leads to pericatheter masses that morphologically resemble those observed in dogs and humans. This small-animal model may be useful for studying spinal drug toxicology in general and the biology of intrathecal granuloma formation in particular.


Subject(s)
Analgesics, Opioid/adverse effects , Catheterization/methods , Drug Delivery Systems/methods , Granuloma/chemically induced , Injections, Spinal/methods , Morphine/adverse effects , Spinal Cord Diseases/chemically induced , Animals , Catheters , Cisterna Magna , Disease Models, Animal , Dogs , Dose-Response Relationship, Drug , Granuloma/pathology , Guinea Pigs , Magnetic Resonance Imaging , Male , Meninges/pathology , Polyethylene , Polyurethanes , Spinal Cord Diseases/pathology
19.
ACS Appl Mater Interfaces ; 8(23): 14740-6, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27144808

ABSTRACT

Nanocarriers with the ability to spatially organize chemically distinct multiple bioactive moieties will have wide combinatory therapeutic and diagnostic (theranostic) applications. We have designed dual-functionalized, 100 nm to 1 µm sized scalable nanocarriers comprising a silica golf ball with amine or quaternary ammonium functional groups located in its pits and hydroxyl groups located on its nonpit surface. These functionalized golf balls selectively captured 10-40 nm charged gold nanoparticles (GNPs) into their pits. The selective capture of GNPs in the golf ball pits is visualized by scanning electron microscopy. ζ potential measurements and analytical modeling indicate that the GNP capture involves its proximity to and the electric charge on the surface of the golf balls. Potential applications of these dual-functionalized carriers include distinct attachment of multiple agents for multifunctional theranostic applications, selective scavenging, and clearance of harmful substances.


Subject(s)
Theranostic Nanomedicine/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Scanning , Silicon Dioxide
20.
Brain Behav Immun ; 56: 378-89, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26970355

ABSTRACT

Mechanosensory fibers are enveloped by myelin, a unique multilamellar membrane permitting saltatory neuronal conduction. Damage to myelin is thought to contribute to severe pain evoked by innocuous tactile stimulation (i.e., mechanical allodynia). Our earlier (Liu et al., 2012) and present data demonstrate that a single injection of a myelin basic protein-derived peptide (MBP84-104) into an intact sciatic nerve produces a robust and long-lasting (>30days) mechanical allodynia in female rats. The MBP84-104 peptide represents the immunodominant epitope and requires T cells to maintain allodynia. Surprisingly, only systemic gabapentin (a ligand of voltage-gated calcium channel α2δ1), but not ketorolac (COX inhibitor), lidocaine (sodium channel blocker) or MK801 (NMDA antagonist) reverse allodynia induced by the intrasciatic MBP84-104. The genome-wide transcriptional profiling of the sciatic nerve followed by the bioinformatics analyses of the expression changes identified interleukin (IL)-6 as the major cytokine induced by MBP84-104 in both the control and athymic T cell-deficient nude rats. The intrasciatic MBP84-104 injection resulted in both unilateral allodynia and unilateral IL-6 increase the segmental spinal cord (neurons and astrocytes). An intrathecal delivery of a function-blocking IL-6 antibody reduced the allodynia in part by the transcriptional effects in large-diameter primary afferents in DRG. Our data suggest that MBP regulates IL-6 expression in the nervous system and that the spinal IL-6 activity mediates nociceptive processing stimulated by the MBP epitopes released after damage or disease of the somatosensory nervous system.


Subject(s)
Calcium Channel Blockers/pharmacology , Cyclooxygenase Inhibitors/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Interleukin-6/metabolism , Myelin Basic Protein/pharmacology , Peptide Fragments/pharmacology , Sciatic Nerve/drug effects , Spinal Cord/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology , Amines/pharmacology , Animals , Cyclohexanecarboxylic Acids/pharmacology , Dizocilpine Maleate/pharmacology , Female , Gabapentin , Genomics , Interleukin-6/immunology , Ketorolac/pharmacology , Lidocaine/pharmacology , Myelin Basic Protein/administration & dosage , Peptide Fragments/administration & dosage , Rats , Rats, Nude , Rats, Sprague-Dawley , gamma-Aminobutyric Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...