Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med Genomics ; 17(1): 130, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745205

ABSTRACT

BACKGROUND: Whole exome sequencing allows rapid identification of causative single nucleotide variants and short insertions/deletions in children with congenital anomalies and/or intellectual disability, which aids in accurate diagnosis, prognosis, appropriate therapeutic interventions, and family counselling. Recently, de novo variants in the MED13 gene were described in patients with an intellectual developmental disorder that included global developmental delay, mild congenital heart anomalies, and hearing and vision problems in some patients. RESULTS: Here we describe an infant who carried a de novo p.Pro835Ser missense variant in the MED13 gene, according to whole exome trio sequencing. He presented with congenital heart anomalies, dysmorphic features, hydrocephalic changes, hypoplastic corpus callosum, bilateral optic nerve atrophy, optic chiasm atrophy, brain stem atrophy, and overall a more severe condition compared to previously described patients. CONCLUSIONS: Therefore, we propose to expand the MED13-associated phenotype to include severe complications that could end up with multiple organ failure and neonatal death.


Subject(s)
Abnormalities, Multiple , Mediator Complex , Mutation, Missense , Phenotype , Humans , Male , Mediator Complex/genetics , Abnormalities, Multiple/genetics , Infant , Infant, Newborn , Syndrome , Exome Sequencing
2.
Clin Genet ; 105(6): 683-685, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38511226

ABSTRACT

A case of a newborn with tetralogy of Fallot, corpus callosum hypoplasia, and phenotypic features similar to DiGeorge syndrome. Chromosomal microarray analysis did not reveal any alterations. Whole exome sequencing and Sanger sequencing identified a de novo variant in the HIRA gene resulting in the loss of the start codon.


Subject(s)
Cell Cycle Proteins , DiGeorge Syndrome , Histone Chaperones , Female , Humans , Infant, Newborn , Male , Agenesis of Corpus Callosum/genetics , Cell Cycle Proteins/genetics , DiGeorge Syndrome/genetics , DiGeorge Syndrome/pathology , Exome Sequencing , Histone Chaperones/genetics , Phenotype , Tetralogy of Fallot/genetics , Transcription Factors/genetics , Adult , Pedigree
3.
Curr Pediatr Rev ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38375845

ABSTRACT

BACKGROUND: Cholestatic liver disease is an important cause of morbidity and mortality and a leading indication for liver transplantation in children. These include diseases, such as biliary atresia, Alagille syndrome, progressive familial intrahepatic cholestasis, sclerosing cholangitis, bile acid synthesis defects, and many others. CASE PRESENTATION: NGS was used as a diagnostic tool to identify the genetic cause in the patient with cholestatic syndrome and to figure out and describe what mutation will be found. In the present observation, the cholestasis syndrome with low GGT activity and intense pruritus was the leading symptom of the patient. The examination also revealed other characteristic features of osteo- oto-hepato-enteric syndrome. The patient had facial features that mimicked Alagille syndrome, which complicated the diagnostic search. Moreover, the genetic test revealed two new pathogenic variants in the UNC45A gene. CONCLUSION: This clinical observation demonstrates the importance of a multidisciplinary approach in the diagnosis of rare genetic diseases and using WES, which can accelerate the diagnosis compared with outdated gene panels.

4.
J Clin Pathol ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37536923

ABSTRACT

OBJECTIVE: We describe the clinical and genetic characteristics of fetuses and infants diagnosed with tuberous sclerosis complex (TSC) in our centre, prenatally or neonatally, for a better understanding of the benefits of early screening. METHODS: In this retrospective study, we analysed the data on one fetus and nine infants with a definitive TSC diagnosis by genetic criteria (five patients carrying TSC1 variants and 5 patients carrying TSC2 variants). We explored the differences between phenotypes of patients carrying TSC1 and TSC2 pathogenic variants. RESULTS: The most common initial presenting features of TSC were cardiac rhabdomyomas (CRs) that were observed in nine out of ten patients. The most common postnatal features, besides CR, were presented with subependymal nodules-in five patients, and hypomelanotic macules-in four patients. In total, 10 variants causing TSC were detected in this study, including 5 novel variants. We demonstrated that patients with TSC2 variants had earlier onset and more severe clinical manifestations compared with patients carrying TSC1 variants. CONCLUSION: Early diagnosis of TSC improves genetic counselling and perinatal management.

5.
Genes (Basel) ; 14(6)2023 05 28.
Article in English | MEDLINE | ID: mdl-37372357

ABSTRACT

BACKGROUND: Intellectual disability with developmental delay is the most common developmental disorder. However, this diagnosis is rarely associated with congenital cardiomyopathy. In the current report, we present the case of a patient suffering from dilated cardiomyopathy and developmental delay. METHODS: Neurological pathology in a newborn was diagnosed immediately after birth, and the acquisition of psychomotor skills lagged behind by 3-4 months during the first year of life. WES analysis of the proband did not reveal a causal variant, so the search was extended to trio. RESULTS: Trio sequencing revealed a de novo missense variant in the CAMK2D gene (p.Arg275His), that is, according to the OMIM database and available literature, not currently associated with any specific inborn disease. The expression of Ca2+/calmodulin-dependent protein kinase II delta (CaMKIIδ) protein is known to be increased in the heart tissues from patients with dilated cardiomyopathy. The functional effect of the CaMKIIδ Arg275His mutant was recently reported; however, no specific mechanism of its pathogenicity was proposed. A structural analysis and comparison of available three-dimensional structures of CaMKIIδ confirmed the probable pathogenicity of the observed missense variant. CONCLUSIONS: We suggest that the CaMKIIδ Arg275His variant is highly likely the cause of dilated cardiomyopathy and neurodevelopmental disorders.


Subject(s)
Cardiomyopathy, Dilated , Intellectual Disability , Neurodevelopmental Disorders , Infant, Newborn , Humans , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/diagnosis , Neurodevelopmental Disorders/genetics , Mutation, Missense , Intellectual Disability/genetics , Proteins/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
6.
Genes (Basel) ; 14(2)2023 01 31.
Article in English | MEDLINE | ID: mdl-36833293

ABSTRACT

BACKGROUND: The reduction in next-generation sequencing (NGS) costs allows for using this method for newborn screening for monogenic diseases (MDs). In this report, we describe a clinical case of a newborn participating in the EXAMEN project (ClinicalTrials.gov Identifier: NCT05325749). METHODS: The child presented with convulsive syndrome on the third day of life. Generalized convulsive seizures were accompanied by electroencephalographic patterns corresponding to epileptiform activity. Proband WES expanded to trio sequencing was performed. RESULTS: A differential diagnosis was made between symptomatic (dysmetabolic, structural, infectious) neonatal seizures and benign neonatal seizures. There were no data in favor of the dysmetabolic, structural, or infectious nature of seizures. Molecular karyotyping and whole exome sequencing were not informative. Trio WES revealed a de novo variant in the KCNJ9 gene (1:160087612T > C, p.Phe326Ser, NM_004983), for which, according to the OMIM database, no association with the disease has been described to date. Three-dimensional modeling was used to predict the structure of the KCNJ9 protein using the known structure of its homologs. According to the predictions, Phe326Ser change possibly disrupts the hydrophobic contacts with the valine side chain. Destabilization of the neighboring structures may undermine the formation of GIRK2/GIRK3 tetramers necessary for their proper functioning. CONCLUSIONS: We believe that the identified variant may be the cause of the disease in this patient but further studies, including the search for other patients with the KCNJ9 variants, are needed.


Subject(s)
Epilepsy , G Protein-Coupled Inwardly-Rectifying Potassium Channels , Infant, Newborn, Diseases , Child , Humans , Infant, Newborn , Epilepsy, Generalized , Neonatal Screening , Seizures , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics
7.
Biomedicines ; 10(2)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35203716

ABSTRACT

In order to determine genetic loci associated with decreasing risk of uterine leiomyomata (UL), a genome-wide association study (GWAS) was performed. We analyzed a group of patients with a family history of UL and a control group consisting of patients without uterine fibroids and a family predisposition to this pathology. Six significant single nucleotide polymorphisms were selected for PCR-genotyping of a large data set of patients with UL. All investigated loci (rs3020434, rs11742635, rs124577644, rs12637801, rs2861221, and rs17677069) demonstrated the lower frequency of minor alleles within a group of women with UL, especially in a subgroup consisting of patients with UL and a familial history of leiomyomata. We also found that the minor allele frequencies of these SNPs in our control group were higher than those across the Caucasian population in all. Based on the obtained data, an evaluation of the common risk of UL was performed. Further work will pave the way to create a specific SNP-panel and allow us to estimate a genotype-based leiomyoma incidence risk. Subsequent studies of genetic variability in a group of patients with a familial predisposition to UL will allow us to make the prediction of the development and course of the disease more individualized, as well as to give our patients personalized recommendations about individual reproductive strategies.

8.
Mol Genet Genomic Med ; 8(10): e1448, 2020 10.
Article in English | MEDLINE | ID: mdl-32857485

ABSTRACT

BACKGROUND: PWS is challenging to diagnose prenatally due to a lack of precise and well-characterized fetal phenotypes and noninvasive markers. Here we present the case of prenatal diagnosis of Prader-Willi syndrome, which was suspected with whole-genome NIPS. METHODS: Whole-genome noninvasive prenatal screening showed a high risk for trisomy 15. Amniocentesis followed by FISH analysis and SNP-based chromosomal microarray was performed. RESULTS: Simultaneous analysis of maternal and fetal samples with SNP microarrays demonstrated maternal uniparental disomy (UPD). CONCLUSION: The presented case is the first case of PWS described in detail, which was suspected by NIPS results. It demonstrates that the choice of confirmation methods concerning the time needed is crucial for the right diagnosis. We suppose that prenatal testing of UPD is essential for chromosome regions, which play a key role in the appearance of various gene-imprinting failure syndromes like PWS or AS.


Subject(s)
Noninvasive Prenatal Testing/methods , Prader-Willi Syndrome/genetics , Uniparental Disomy/genetics , Adult , Amniocentesis/methods , Chromosomes, Human, Pair 15/genetics , Female , Humans , In Situ Hybridization, Fluorescence/methods , Prader-Willi Syndrome/diagnosis , Pregnancy , Uniparental Disomy/pathology
9.
Prenat Diagn ; 37(13): 1305-1310, 2017 12.
Article in English | MEDLINE | ID: mdl-29110322

ABSTRACT

OBJECTIVES: The aim of this study was to establish maternal contribution to false positive noninvasive prenatal DNA screening (NIPS) results and develop the method to distinguish maternal and fetal origin of high-risk monosomy X NIPS calls including mosaic maternal cases. METHOD: A total of 906 women carrying singleton pregnancies have been recruited. Maternal plasma DNA semiconductor massive parallel sequencing was performed to detect common aneuploidies. For the case of high monosomy X risk call, analysis method to distinguish fetal and maternal monosomy X has been additionally applied. RESULTS: According to NIPS results, 18 patients had a high risk of fetal monosomy X. In 11 (61%) cases, fetal aneuploidy was confirmed by karyotyping. Other 7 cases were false positives. In 3 out of 7 cases, additional analysis based on in silico size selection was allowed to assume maternal monosomy X. In these cases, fluorescence in situ hybridization analysis confirmed mosaic monosomy X in maternal blood cells. CONCLUSION: The prevalence of mosaic monosomy X karyotype is 0.3% (3/906)-10 times higher than published before. Additional in silico size-selection and data analysis increases PPV for monosomy X from 61% to 73% for studied population.


Subject(s)
Maternal Serum Screening Tests/methods , Mosaicism , Turner Syndrome/diagnosis , Adult , Computer Simulation , False Positive Reactions , Female , Humans , Pregnancy , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...