Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitol Int ; 100: 102863, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38272301

ABSTRACT

Leishmania, a protozoan parasite, is responsible for the occurrence of leishmaniasis, a disease that is prevalent in tropical regions. Visceral Leishmaniasis (VL), also known as kala-azar in Asian countries, is one of the most significant forms of VL, along with Cutaneous Leishmaniasis (CL) and Mucocutaneous Leishmaniasis (ML). Management of this condition typically entails the use of chemotherapy as the sole therapeutic option. The current treatments for leishmaniasis present several drawbacks, including a multitude of side effects, prolonged treatment duration, disparate efficacy across different regions, and the emergence of resistance. To address this urgent need, it is imperative to identify alternative treatments that are both safer and more effective. The identification of appropriate pharmacological targets in conjunction with biological pathways constitutes the initial stage of drug discovery. In this review, we have addressed the key metabolic pathways that represent potential pharmacological targets as well as prominent treatment options for leishmaniasis.


Subject(s)
Leishmania donovani , Leishmania , Leishmaniasis, Cutaneous , Leishmaniasis, Mucocutaneous , Leishmaniasis, Visceral , Leishmaniasis , Animals , Leishmaniasis/drug therapy , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Asia
2.
Med Chem ; 19(5): 413-430, 2023.
Article in English | MEDLINE | ID: mdl-36200254

ABSTRACT

Pathogenic bacteria, with their innate resistance to drugs, pose a constant threat to human health and well-being and put a persistent strain on the health care system. Development of more effective and safer novel antibacterial drugs is warranted to counter the menace unleashed by pathogenic bacteria. Integration of privileged pharmacophores from various bioactive molecules into a single template is a promising strategy to obtain new leads with unique mechanisms of action to overcome drug resistance. In the past few years, numerous isatin-based hybrid molecules were screened and their pharmacological properties were explored in efforts to develop novel therapeutics. The results of screening show that isatin conjugates exhibit promising activity against a broad range of highly pathogenic gram-positive and gram-negative bacteria and can serve as important leads in the discovery of highly potent broad spectrum antibacterial drugs. Herein, we review the antibacterial bioactive profile of a variety of hybrid isatin derivatives, including isatin-azole, isatin-quinoline/ quinolone, isatin-furan/coumarin, isatin-hydrazone/(thio)semicarbazone, isatin dimers, and isatin- indole hybrids.


Subject(s)
Anti-Bacterial Agents , Isatin , Humans , Anti-Bacterial Agents/pharmacology , Isatin/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Bacteria , Structure-Activity Relationship , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...