Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 712-713: 149907, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38636303

ABSTRACT

Over the past decades, cancer stem cells (CSCs) have emerged as a critical subset of tumor cells associated with tumor recurrence and resistance to chemotherapy. Understanding the mechanisms underlying CSC-mediated chemoresistance is imperative for improving cancer therapy outcomes. This study delves into the regulatory role of NEIL1, a DNA glycosylase, in chemoresistance in ovarian CSCs. We first observed a decreased expression of NEIL1 in ovarian CSCs, suggesting its potential involvement in CSC regulation. Using pan-cancer analysis, we confirmed the diminished NEIL1 expression in ovarian tumors compared to normal tissues. Furthermore, NEIL1 downregulation correlated with an increase in stemness markers and enrichment of CSCs, highlighting its role in modulating CSC phenotype. Further mechanistic investigation revealed an inverse correlation between NEIL1 and RAD18 expression in ovarian CSCs. NEIL1 depletion led to heightened RAD18 expression, promoting chemoresistance possibly via enhancing Translesion DNA Synthesis (TLS)-mediated DNA lesion bypass. Moreover, dowregulation of NEIL1 results in reduced DNA damage accumulation and suppressed apoptosis in ovarian cancer. Overall, our findings unveil a novel mechanism involving NEIL1 and RAD18 in regulating chemoresistance in ovarian CSCs. Targeting this NEIL1-RAD18 axis may offer promising therapeutic strategies for combating chemoresistance and improving ovarian cancer treatment outcomes.


Subject(s)
DNA Glycosylases , DNA-Binding Proteins , Drug Resistance, Neoplasm , Neoplastic Stem Cells , Ovarian Neoplasms , Up-Regulation , Humans , Female , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , DNA Glycosylases/metabolism , DNA Glycosylases/genetics , Cell Line, Tumor , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , DNA Damage , Apoptosis/drug effects , Apoptosis/genetics
2.
Nat Prod Res ; 36(11): 2869-2874, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33960249

ABSTRACT

Ferula assa-foetida, containing organosulfides is widely used in Indian cuisine and traditionally claimed to have several medicinal properties including anticancer properties. Ferula oil enriched with organosulfides displayed significant inhibition of the cell growth in-vitro against SKOV3 and A549 cancer cells in a dose-dependent manner. This prompted us to investigate and delineate the compounds responsible for the activity. In this endeavor, the employed GC/GC-MS analysis resulted in the indecisive outcome. This led to the development of an expedient isocratic RP-HPLC method for the separation and purification of four major compounds which were further unambiguously characterised as (-)-E-2-butyl propenyl disulfide, (-)-Z-2-butyl propenyl disulfide, (-)-1-(methylthio)propyl(E)-1-propenyl disulfide, and (-)-1-(methylthio)propyl(Z)-1-propenyl disulfide employing 1H, 13C, and 2 D NMR. The isolated compounds were further evaluated for their potential against SKOV3 and A549 cell lines where a trisulfide has displayed better activity.


Subject(s)
Ferula , Chromatography, High Pressure Liquid , Disulfides , Ferula/chemistry , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy
3.
Int J Mol Sci ; 21(19)2020 Sep 27.
Article in English | MEDLINE | ID: mdl-32992449

ABSTRACT

Emerging shreds of evidence suggest that tumor-associated macrophages (TAMs) modulate various hallmarks of cancer during tumor progression. Tumor microenvironment (TME) prime TAMs to execute important roles in cancer development and progression, including angiogenesis, matrix metalloproteinases (MMPs) secretion, and extracellular matrix (ECM) disruption. MicroRNAs (miRNAs) are critical epigenetic regulators, which modulate various functions in diverse types of cells, including macrophages associated with TME. In this review article, we provide an update on miRNAs regulating differentiation, maturation, activation, polarization, and recruitment of macrophages in the TME. Furthermore, extracellular miRNAs are secreted from cancerous cells, which control macrophages phenotypic plasticity to support tumor growth. In return, TAMs also secrete various miRNAs that regulate tumor growth. Herein, we also describe the recent updates on the molecular connection between tumor cells and macrophages. A better understanding of the interaction between miRNAs and TAMs will provide new pharmacological targets to combat cancer.


Subject(s)
MicroRNAs/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Polarity/genetics , Cell Polarity/immunology , Disease Progression , Gene Expression Regulation, Neoplastic/immunology , Humans , Macrophage Activation/genetics , Macrophage Activation/immunology , MicroRNAs/genetics , Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL