Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 38(9): 5104-18, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21978056

ABSTRACT

PURPOSE: A novel rotational IMRT (rIMRT) technique using burst delivery (continuous gantry rotation with beam off during MLC repositioning) is investigated. The authors evaluate the plan quality and delivery efficiency and accuracy of this dynamic technique with a conventional flat 6 MV photon beam. METHODS: Burst-delivery rIMRT was implemented in a planning system and delivered with a 160-MLC linac. Ten rIMRT plans were generated for five anonymized patient cases encompassing head and neck, brain, prostate, and prone breast. All plans were analyzed retrospectively and not used for treatment. Among the varied plan parameters were the number of optimization points, number of arcs, gantry speed, and gantry angle range (alpha) over which the beam is turned on at each optimization point. Combined rotational/step-and-shoot rIMRT plans were also created by superimposing multiple-segment static fields at several optimization points. The rIMRT trial plans were compared with each other and with plans generated using helical tomotherapy and VMAT. Burst-mode rotational IMRT plans were delivered and verified using a diode array, ionization chambers, thermoluminescent dosimeters, and film. RESULTS: Burst-mode rIMRT can achieve plan quality comparable to helical tomotherapy, while the former may lead to slightly better OAR sparing for certain cases and the latter generally achieves slightly lower hot spots. Few instances were found in which increasing the number of optimization points above 36, or superimposing step-and-shoot IMRT segments, led to statistically significant improvements in OAR sparing. Using an additional rIMRT partial arc yielded substantial OAR dose improvements for the brain case. Measured doses from the rIMRT plan delivery were within 4% of the plan calculation in low dose gradient regions. Delivery time range was 228-375 s for single-arc rIMRT 200-cGy prescription with a 300 MU/min dose rate, comparable to tomotherapy and VMAT. CONCLUSIONS: Rotational IMRT with burst delivery, whether combined with static fields or not, yields clinically acceptable and deliverable treatment plans.


Subject(s)
Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Rotation , Humans , Neoplasms/radiotherapy , Photons/therapeutic use , Radiotherapy Dosage
2.
Article in English | MEDLINE | ID: mdl-18002603

ABSTRACT

PURPOSE: Large patient anatomies and limited imaging field-of-view (FOV) lead to truncation of CT projections. Truncation introduces serious artifacts into reconstructed images, including central cupping and bright external rings. FOV may be increased using laterally offset detectors, but this requires sophisticated imaging hardware and full angular scanning. We propose a novel method to complete truncated projections based on the observation that the thickness of the patient may be estimated along the projection rays by calculating water-equivalent thicknesses (WET). These values are not at all affected by truncation and thus constitute valuable auxiliary information. METHODS: We parameterize pairs of points along each ray that intersects the unknown object boundary. These points are separated by the measured WET value (obtained from projections that have been corrected for scatter and beam-hardening). We assume, for all large body parts, that the patient outline may be roughly approximated as an ellipse. Using a deterministic optimization algorithm, we simultaneously estimate the point positions and ellipse parameters by minimizing the distance between point sets and the ellipse boundary. The optimal ellipse is used to complete the truncated projections. Reconstruction then ensues. We apply the algorithm to a severely truncated CT dataset of a typical abdomen. RESULTS: The RMS error between complete data and truncated reconstructions (corrected using an empirical extrapolation approach) is 20.4% for an abdominal dataset. The new algorithm reduces this error to 1.0%. CONCLUSION: Even thought the algorithm assumes an elliptical patient cross-section, truly impressive increases in quantitative image quality are observed. The presence of pelvic bone in the image does not appreciably bias the ellipse position even though it does bias the thickness estimates for some rays. The algorithm incurs low computational cost and is suitable for on-line clinical workflows.


Subject(s)
Algorithms , Artifacts , Tomography, X-Ray Computed/methods , Humans , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...