Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
J Cell Biochem ; 119(8): 6514-6526, 2018 08.
Article in English | MEDLINE | ID: mdl-29363789

ABSTRACT

The somatic component of seminiferous epithelium, the Sertoli cells (Sc) respond to Follicle stimulating hormone (FSH), and Testosterone (T) to produce factors which are necessary for germ cell (Gc) survival and differentiation. Infant Sc do not support spermatogenesis in spite of sufficient hormonal milieu, a situation similar to that found in male idiopathic infertility. Sc maturation during pubertal period involves expression of some genes which may be important for initiation of spermatogenesis. Analysis of differentially expressed genes, one by one, in infant and pubertal Sc might provide useful information about the regulation of spermatogenesis. DNA microarray based analysis of mRNA from 5-days (infant) and 12-days (pubertal) old rat Sc revealed increased expression of Nor-1 by pubertal Sc. NOR-1 is an orphan nuclear receptor involved in maintaining cellular homeostasis and disease. We generated transgenic mice using shRNA cloned under Pem (Rhox5) promoter which is activated at puberty in Sc. Such transgenic mice had reduced Nor-1 expression and increased Tgfß1, Tgfß3, and Smad3 expression. Moreover, an increase in ß-catenin expression was observed in NOR-1 knockdown testes. High ß-catenin in such transgenic mice was found to be associated with disruption of Sc maturation characterized by elevated expression of Anti Mullerian hormone, Cytokeratin 18, and Sox9. This disruption of Sc maturation resulted in Gc apoptosis. Such NOR-1 knockdown mice showed reduced sperm count and litter size. We report for the first time that NOR-1 plays a crucial role in regulating sperm count and male fertility.


Subject(s)
DNA-Binding Proteins/biosynthesis , Fertility , Nerve Tissue Proteins/biosynthesis , Receptors, Steroid/biosynthesis , Receptors, Thyroid Hormone/biosynthesis , Sertoli Cells/metabolism , Spermatogenesis , Spermatozoa/metabolism , Animals , DNA-Binding Proteins/genetics , Male , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Rats , Receptors, Steroid/genetics , Receptors, Thyroid Hormone/genetics , Sertoli Cells/cytology , Sperm Count , Spermatozoa/cytology
3.
Cell Tissue Res ; 371(2): 351-363, 2018 02.
Article in English | MEDLINE | ID: mdl-29064078

ABSTRACT

Testicular Sertoli cells make a niche for the division and differentiation of germ cells. Sertoli cells respond to increased follicle-stimulating hormone (FSH) and testosterone (T) levels at the onset of puberty by producing paracrine factors which affect germ cells and trigger robust onset of spermatogenesis. Such paracrine support to germ cells is absent during infancy, despite Sertoli cells being exposed to high FSH and T within the infant testis. This situation is similar to certain cases of male idiopathic infertility where post-pubertal Sertoli cells fail to support germ cell division and differentiation in spite of endogenous or exogenous hormonal support. Defective Sertoli cells in such individuals may fail to express the full complement of their paracrine repertoire. Identification and supplementation with such factors may overcome Sertoli cells deficiencies and help trigger quantitatively and qualitatively normal differentiation of germ cells. To this end, we compared the transcriptome of FSH- and T-treated infant and pubertal monkey Sertoli cells by DNA microarray. Expression of Wnt3, a morphogen of the Wnt/ß-catenin pathway, was higher in pubertal Sertoli cells relative to infant Sertoli cells. Transgenic mice were generated by us in which Wnt3 expression was curtailed specifically in post-pubertal Sertoli cells by shRNA. Subfertility and oligozoospermia were noticed in such animals with low Wnt3 expression in post-pubertal Sertoli cells along with diminished expression of Connexin43, a gap-junctional molecule essential for germ cell development. We report that the FSH- and T-targetedf Wnt3 governs Sertoli cell-mediated regulation of spermatogenesis and hence is crucial for fertility.


Subject(s)
Fertility , Sertoli Cells/metabolism , Testis/pathology , Wnt3 Protein/metabolism , Animals , Cells, Cultured , Connexin 43/metabolism , Gene Knockdown Techniques , Haplorhini , Male , Mice, Transgenic , Sertoli Cells/pathology , Wnt Signaling Pathway
4.
Cell Tissue Res ; 368(2): 389-396, 2017 05.
Article in English | MEDLINE | ID: mdl-27139181

ABSTRACT

In response to various hormonal (follicle-stimulating hormone [FSH] and testosterone [T]) and biochemical inputs, testicular Sertoli cells (Sc) produce factors that regulate spermatogenesis. A number of FSH- and T-responsive Sc-specific genes, necessary for spermatogenesis, have been identified to date. However, the hormone-induced in vitro expression pattern of most of these genes is reported to be inconsistent at various time points in primary rat Sc cultures. As a matter of convenience, cultured Sc are constantly exposed to hormones for a few hours to days in the reported literature, although Sc are exposed to pulsatile FSH and T in vivo. The major aim of the present study is to evaluate the advantage, if any, of the in vitro administration of pulsatile hormone (FSH and T in combination) treatment on gene expression of cultured Sc as compared with that of constant hormone treatment. Pulsatile treatment (a 30-min hormonal exposure every 3 h) mimicking the in vivo condition reveals a more prominent effect of hormones in augmenting gene expression as compared with constant treatment. Our results indicate that the expressions of Stem cell factor (Scf, only responsive to FSH), Claudin11 (only responsive to T) and Transferrin (both FSH- and T-responsive) mRNAs are significantly higher at 12 h upon pulsatile treatment than upon constant hormonal treatment. Maximal expression of relevant genes because of pulsatile treatment with hormones suggests that this protocol provides a more suitable premise for assessing hormone-induced gene expression in isolated Sc than one involving constant exposure to hormones.


Subject(s)
Sertoli Cells/metabolism , Animals , Cells, Cultured , Claudins/genetics , Claudins/metabolism , Follicle Stimulating Hormone/pharmacology , Gene Expression Regulation/drug effects , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Receptors, FSH/genetics , Receptors, FSH/metabolism , Sertoli Cells/drug effects , Stem Cell Factor/genetics , Stem Cell Factor/metabolism , Testosterone/pharmacology , Transferrin/genetics , Transferrin/metabolism
5.
Mol Ther Methods Clin Dev ; 3: 16076, 2016.
Article in English | MEDLINE | ID: mdl-27933305

ABSTRACT

Our ability to decipher gene sequences has increased enormously with the advent of modern sequencing tools, but the ability to divulge functions of new genes have not increased correspondingly. This has caused a remarkable delay in functional interpretation of several newly found genes in tissue and age specific manner, limiting the pace of biological research. This is mainly due to lack of advancements in methodological tools for transgenesis. Predominantly practiced method of transgenesis by pronuclear DNA-microinjection is time consuming, tedious, and requires highly skilled persons for embryo-manipulation. Testicular electroporation mediated transgenesis requires use of electric current to testis. To this end, we have now developed an innovative technique for making transgenic mice by giving hypotonic shock to male germ cells for the gene delivery. Desired transgene was suspended in hypotonic Tris-HCl solution (pH 7.0) and simply injected in testis. This resulted in internalization of the transgene in dividing germ-cells residing at basal compartment of tubules leading to its integration in native genome of mice. Such males generated transgenic progeny by natural mating. Several transgenic animals can be generated with minimum skill within short span of time by this easily adaptable novel technique.

6.
Microbiology (Reading) ; 158(Pt 12): 2891-2902, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23023973

ABSTRACT

Bacteria belonging to the Alphaproteobacteria normally harbour multiple copies of the heat shock sigma factor (known as σ(32), σ(H) or RpoH). Azospirillum brasilense, a non-photosynthetic rhizobacterium, harbours five copies of rpoH genes, one of which is an rpoH2 homologue. The genes around the rpoH2 locus in A. brasilense show synteny with that found in rhizobia. The rpoH2 of A. brasilense was able to complement the temperature-sensitive phenotype of the Escherichia coli rpoH mutant. Inactivation of rpoH2 in A. brasilense results in increased sensitivity to methylene blue and to triphenyl tetrazolium chloride (TTC). Exposure of A. brasilense to TTC and the singlet oxygen-generating agent methylene blue induced several-fold higher expression of rpoH2. Comparison of the proteome of A. brasilense with its rpoH2 deletion mutant and with an A. brasilense strain overexpressing rpoH2 revealed chaperone GroEL, elongation factors (Ef-Tu and EF-G), peptidyl prolyl isomerase, and peptide methionine sulfoxide reductase as the major proteins whose expression was controlled by RpoH2. Here, we show that the RpoH2 sigma factor-controlled photooxidative stress response in A. brasilense is similar to that in the photosynthetic bacterium Rhodobacter sphaeroides, but that RpoH2 is not involved in the detoxification of methylglyoxal in A. brasilense.


Subject(s)
Azospirillum brasilense/physiology , Gene Expression Regulation, Bacterial , Heat-Shock Proteins/metabolism , Oxidative Stress , Sigma Factor/metabolism , Stress, Physiological , Azospirillum brasilense/drug effects , Azospirillum brasilense/genetics , Escherichia coli/genetics , Gene Deletion , Genetic Complementation Test , Heat-Shock Proteins/genetics , Methylene Blue/metabolism , Oxidants/metabolism , Proteome/analysis , Rhodobacter sphaeroides/physiology , Sigma Factor/genetics , Tetrazolium Salts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...