Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 820: 137606, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38110147

ABSTRACT

PURPOSE: Maternal deprivation (MD), a severe naturalistic type of stress in the early postnatal days, is a well-established model of early life stress (ELS) that models juvenile adversity and may result in significant depressive disease in adults. In order to analyze the behavioural, brain monoamine level and HPA axis dysregulations caused by ELS and to determine whether Resveratrol (Res) could counteract these effects, Wistar rat pups were subjected to the MD paradigm, which simulated the consequences of depression. METHODS: The pups on their postnatal day 1-10 were divided in 5 groups (n = 8); nondeprived (ND), maternally deprived (DC), standard fluoxetine (FLX) (5 mg/kg i.p), Res (20, 40 mg/kg i.p). Excluding the ND group, other pups were separated from dam for 3hr/day from day 1 to 10th day. Treatment was initiated from 50th day and was given for 12 days. The behaviour parameters light/dark test, sucrose preference, and resident intruder test were employed. Serum cortisol levels, brain antioxidant activity, monoamine levels and neuronal morphology in the hippocampus were assessed. RESULTS: The MD rats showed altered behaviour, including more light-dark transitions, less desire for sucrose, and lower attack latencies. MD influenced the release of serum cortisol and interfered with monoamine, antioxidant levels as well as reduced Nissl bodies in the hippocampus. Treatment with Res led to improved behavioural functions also restored monoamine levels, reduced cortisol release, oxidative stress and prevented histopathological alterations in the rat hippocampus. CONCLUSION: Res showed neuroprotective effects by improving the brain antioxidants and monoamine levels and HPA axis dysregulation and thus improves MD induced depression like behaviour in Wistar rats.


Subject(s)
Adverse Childhood Experiences , Depression , Rats , Animals , Resveratrol/pharmacology , Depression/drug therapy , Rats, Wistar , Hypothalamo-Hypophyseal System , Hydrocortisone , Pituitary-Adrenal System , Antioxidants/pharmacology , Hippocampus , Sucrose , Stress, Psychological/complications , Stress, Psychological/drug therapy
2.
J Colloid Interface Sci ; 245(1): 1-15, 2002 Jan 01.
Article in English | MEDLINE | ID: mdl-16290329

ABSTRACT

The association of many classes of surface-active molecules into micellar aggregates is a well-known phenomenon. Micelles are in dynamic equilibrium, constantly disintegrating and reforming. This relaxation process is characterized by the slow micellar relaxation time constant, tau(2), which is directly related to the micellar stability. Theories of the kinetics of micelle formation and disintegration have been discussed to identify the gaps in our complete understanding of this kinetic process. The micellar stability of sodium dodecyl sulfate micelles has been shown to significantly influence technological processes involving a rapid increase in interfacial area, such as foaming, wetting, emulsification, solubilization, and detergency. First, the available monomers adsorb onto the freshly created interface. Then, additional monomers must be provided by the breakup of micelles. Especially when the free monomer concentration is low, which is the case for many nonionic surfactant solutions, the micellar breakup time is a rate-limiting step in the supply of monomers. The Center for Surface Science & Engineering at the University of Florida has developed methods using stopped flow and pressure jump with optical detection to determine the slow relaxation time of micelles of nonionic surfactants. The results showed that the ionic surfactants such as SDS exhibit slow relaxation times in the range from milliseconds to seconds, whereas nonionic surfactants exhibit slow relaxation times in the range from seconds (for Triton X-100) to minutes (for polyoxyethylene alkyl ethers). The slow relaxation times are much longer for nonionic surfactants than for ionic surfactants, because of the absence of ionic repulsion between the head groups. The observed relaxation times showed a direct correlation with dynamic surface tension and foaming experiments. In conclusion, relaxation time data of surfactant solutions correlate with the dynamic properties of the micellar solutions. Moreover, the results suggest that appropriate micelles with specific stability or tau(2) can be designed by controlling the surfactant structure, concentration, and physicochemical conditions (e.g., salt concentration, temperature, and pressure). One can also tailor micelles by mixing anionic/cationic or ionic/nonionic surfactants for a desired stability to control various technological processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...